comentarisviruslents

Aquest blog és una seguit de comentaris personals i probablement poc transferibles sobre ciència i política.

Archivos en la Categoría: influenza aviària

Comentaris virus-lents (253): Reflexions i lliçons per aprendre (?) de la CoVID19.

Estem en mig (sí, m’han llegit bé, en mig) d’una pandèmia causada per un coronavirus, un sarbecovirus, el SARSCoV2 que causa al CoVID19, i és evident que el focus ha d’estar en administrar el màxim de vacunes possibles (i si és possible, primer als grups de risc, però no a escala local sinó global), desenvolupar nous vaccins i tractaments (antivirals entre altres) i recolzar-se encara, on calgui, en mesures no farmacològiques (mans, mascaretes, distància) per reduir l’impacte i la mortalitat del virus. Però això, com diria un metge, és curar i el que caldria és… mirar de prevenir.


Mentre no fiquem fermament el focus en la interfase i relacions entre el compartiment silvestre i els humans la història està condemnada a repetir-se. Fins i tot si ens focalitzem en aquestes interaccions zoonotiques es pot arribar a repetir una pandèmia, però sempre ens agafarà més preparats.


L’espècie humana és una més dintre del continu d’espècies de mamífers. I les malalties que considerem humanes, des d’un punt de vista històric van tenir en els altres animals el seu inici; i és possible que si alguns animals parlessin ens llencessin acusacions semblants (zoonosis reversa). Així, se sap que el HIV té un dels seus orígens en el virus de la immunodeficiència de simi, i que saltà diversos cops a humans, fa aproximadament un segle, al centre d’Àfrica. En menys d’una dècada hem tingut no menys de 5 brots epidèmics d’Ebola, un d’ells (2014-2016) de dimensions descomunals (29.000 infectats, 11.000 morts) i té el seu reservori en ratpenats. Zika es va passejar per tot el planeta entre 2015 i 2016 (amenaçant les olimpíades a Brasil). I no s’ha d’oblidar SARSCoV, que no fou pandèmic però si ruixà amb casos o morts a tots els continents (2002-2004). Però és que els herpesvirus porten centenars d’anys entre nosaltres i van saltar del compartiment silvestre, i per exemple, el xarampió és un morbillivirus amb un origen comú amb el virus de la pesta bovina (i començà a afectar-nos fa més de 5000 anys, en l’època de domesticació del boví). Precisament aquest dos darrers exemples fan palès que de zoonosis ha hagut sempre, i que no hem de considerar-nos “el final de res”, com si virus i bacteris tinguessin com a destí acabar-nos infectant. Simplement, nosaltres som barrejats amb altres especies i els virus, i els bacteris, de tant en tant, salten cap a nosaltres, i una de cada tantes, ens “travessen”, desencadenant una malaltia amb clínica evident…i transmissible. Hi ha moltíssims salts entre reservoris animals, espècies intermediàries, noves especies hostes finals, i no sempre estarem en la mateixa baula d’aquesta cadena.


El problema està en la freqüència, en l’increment de freqüència dels salts zoonotics. Estimacions, possiblement subestimacions, parlen de l’existència de més de 1,7 milions de virus en el compartiment animal, dels quals entre 1/3 i la meitat tindrien potencial zoonotic. I, a banda, hi ha reservoris no vius, com seria el permafrost i el seu desgel. Pedrera, fent servir un símil futbolístic, hi ha, i força. Sense amagar la millora dels sistemes de detecció i vigilància és evident que des de fa unes dècades es detecta una acceleració d’aquestes invasions, algunes de les quals es queden (per sempre, com SARSCoV2, que no serà eradicable), altres malviuen sense acomiadar-se (com MERSCoV que mai s’enlairà), i altres fracassen (com SARSCoV, sortosament).


Però, hem de vigilar a totes les especies que comparteixen amb nosaltres la Terra, o hi ha més aviat uns “sospitosos habituals”? Els primers on mirar seria els mamífers, però no sempre la font original serà el problema a abordar. I per font original, en aquesta pandèmia, tindríem els ratpenats, que hostatgen un nombre indeterminat, però probablement alt, de Potential Pandemic Pathogens, o PPP. Tanmateix, és altament improbable, que no impossible, que un virus de ratpenat pugui fer un salt zoonotic exitós DIRECTE a l’espècie humana. És més segur, si es vol fer una vigilància efectiva, concentrar-se en espècies que interactuen molt més amb els humans, com serien els porcs (font d’aliment), o els rosegadors (que s’han adaptat perfectament al nostre hàbitat) o aquells dels que som parents propers, els primats, els virus dels quals són probablement del tot intercanviables amb els “nostres” virus (només cal recordar el virus de la verola del mico, o monkeypox).


Hi ha més especies de peixos i aus (i aquí ens vindria al cap els virus de la influença aviaria altament patògena, HPAI, per exemple H5N1 o H7N9) que de mamífers però la distància filogenètica entre ells fa que sigui molt reduïda la probabilitat que es doni una exitosa transmissió inter-espècies. Un ull en els HPAI sí caldria mantenir-lo, però.


I si en lloc de vigilar transmissors ens concentréssim en els virus “per se”? En aquest cas, clarament caldria concentrar-se en els virus de transmissió respiratòria, i aquí estaríem parlant de paramixovirus (virus Hendra i Nipah), virus influença (grip, i tenim un descripció recent de l’acció d’un H9N2, d’aus, sobre teixons asiàtics) i coronavirus (dels que tenim exemples a ratpenats, rosegadors i porcs, mira per on, grups d’espècies esmentades al paràgraf anterior). Tots ells, virus ARN; important la seva capacitat de mutació, que els dona plasticitat DESPRES del salt (i aquí cridem de nou a SARSCoV2 que en les seves primeres propagacions en humans no era del tot eficient en la seva transmissió; la variant de Wuhan tenia una R0 de 2-3; l’actual variant Omicron està, en un càlcul conservatiu, sobre 9-10; la lliçó de tot plegat és que no cal ser extremadament eficient i adaptat per disparar una pandèmia). I important també la seva capacitat de recombinació, que permet assajar canvis de gran abast (amb el risc conseqüent de fracassar i no ser viables).


El cas de SARSCoV2 ens mostra altre perill; l’aparició de coronavirus que s’adaptin molt bé a una espècie però que sigui relativament generalistes i puguin vessar sobre diverses (moltes) espècies. Si SARSCoV2 no serà eradicable és, entre altres motius, perquè sabem que es propaga amb facilitat a felins (gats, lleons, tigres), visons, rosegadors com hàmsters, ungulats com els cérvols de cua blanca (que han rebut aquest coronavirus a través de diversos salts DES DE els humans); massa reservoris, connectats, com per plantejar-se la seva completa eliminació.


On caldrà vigilar? No podem controlar totes les interaccions i punts de inter-relació silvestre-humà. No té sentit (per mi) fer una vigilància a gran escala del viroma (un pool en continua, i per a la nostra escala temporal, ràpida evolució) i bacterioma, potencialment pandèmic, de les especies silvestres. Doncs per estalviar esforços i ser eficients (encara que se’ns pot escapar algun salt) cal concentrar-se en els punts calents de la interfase; treballadors de granges intensives i extensives, escorxadors; venedors d’animals silvestres vius (molt principalment el continent asiàtic, i aquí, vergonya i desvergonyiment per a Xina, que va ser avisada per la natura i per la OMS del que suposa el comerç intens i extens, en condicions lamentables, amb animals silvestres, i que en 15 anys NO HA FET RES al respecte), i per exemple, a casa nostra, els treballadors de centres de recuperació d’animals, que ens servirien tots d’antenes de detecció. I si jo tingués d’escollir, els col·lectius marcat en negreta; un per la freqüència i intensitat de les interaccions; el segon perquè hi ha molta vida més enllà dels animals domèstics.


Però això vol dir invertir diners durant anys sense tenir un resultat clar, ni definitiu. Un esforç que pocs estats estan disposats a fer, encara que potser l’abordament hauria de ser global.

Però aquesta, aquesta és tota una altra història.

Comentaris virus-lents (206): El bioterrorisme pot ser molt, molt animal.

 

El Bioterrorisme es podria definit com l’ús intencional de qualsevol bacteri, virus, substància infecciosa o producte biològic que pot haver estat generat a partir de tècniques biotecnològiques però també bacteris, virus o substàncies infeccioses ja presents a la natura, o fins i tot components modificats dels mateixos, per causar mort, malaltia o alteracions de salut a éssers humans, animals, o plantes per influir en el comportament dels governs o intimidar o coaccionar a les poblacions civils.

 

El bioterrorisme, doncs, fa servir armes biològiques i juga amb l’acció mental d’aquests sobre els governs i la població civil. Es diu que les armes biològiques són relativament fàcils de produir i barates, poden ser dissenyades per causar mort o malalties incapacitants i ser aerosolitzades per contaminar gran àrees geogràfiques…i no és del tot cert. Els efectes teòrics, però, poden ser devastadors, tan devastadors com una guerra nuclear; les armes biològiques segons Livingston (1984) seria “la bomba atòmica dels pobres”. Aquesta afirmació es sustenta pels càlculs d’un grup d’experts (Huxsoll et al., 1987) que estimaren que cal invertir 1 dolar en armes biològiques versus 2000 dòlars en armes convencionals per obtenir els mateixos efectes (mortalitat, morbilitat) per km2.

 

 

bioterrorism

 

Hi ha una llarga llista de patògens potencials que poden fer servir els bioterroristes; tanmateix són pocs els patògens que “es deixen” manipular fàcilment per a la seva propagació i dispersió. Agents tradicionalment emprats com a armament biològic ofensiu inclouen l’agent actual de l’àntrax, la pesta, tularèmia, brucel·losis, borm, criptoporidiosi, psitacosi, la febre del dengue, verola, febre Q, encefalitis virals equines o virus de febres hemorràgiques. Tots ells són patògens presents en animals, molts d’ells transmissibles a l’ésser humà, el que hem convingut a denominar zoonosis.

 

La immensa majoria de patògens que es troben a les llistes de potencial utilitat bioterrorista són zoonosis. Les categories A i C del llistat d’agents selectes amb potencial bioterrorista del CDC (Centre pel Control i Prevenció de les Malalties) estan plenes d’agents zoonotics; pel que fa la categoria A (els consolidats; poden ser fàcilment disseminats o transmesos entre persones, generen altes taxes de mortalitat; poden causar pànic públic i disrupció social, afectant intensament el sistema de salut pública) són més del 80% del total; pel que fa a la Categoria C (les promeses, les malalties emergents) arriben al 75%.

 

 

englisch_biostoffv-G-wordml02000001

 

Òbviament si ens centrem a les zoonosi, el que estem fent a la llarga és calibrar l’afectació i l’impacte a la salut pública, en l’estat de salut de la població humana. Tanmateix el bioterrorisme pot assolir els mateixos objectius, com es destarotar l’economia d’un país, portant-lo a la ruïna, actuant solament sobre les seves fonts d’aliment, però també d’un cert sector industrial, com són els animals, i per tant disseminant virus o bacteris que causen malalties exclusivament en animals. Anem a repassar-los una mica, que alguns us sonaran:

 

  • Virus de la febre aftosa (VFA). Virus extremadament contagiós entre mamífers, i bastant persistent a les condicions mediambientals, no afecta a éssers humans. Té un gran potencial per causar greus pèrdues econòmiques degut al seu efecte a les cabanes bovina i porquina. La infecció es transmet fàcilment per contacte directe entre animals però també indirectament a traves de fomites, i també subministrant directament material infecciós per via oral. Un únic brot pot comprometre un territori molt extens ja que és fàcilment propagable per via àrea, pel vent. Encara que hi ha vacunes efectives, que s’haurien de subministrar 10 dies abans de l’exposició, aquestes no s’empren en països lliures del virus per mantenir un estatus sanitari que permeti el comerç sense restriccions, ja que el que es determina a l’hora d’exportar és l’absència d’anticossos que implica nul contacte prèvia amb el virus. No hi ha tractament post-exposició. Per tant una incursió amb material infectat no es podria aturar un cop produït i la vacuna, encara que disponible, no tindria cap efecte.

 

  • Rinderpest (peste bovina). Una malaltia aguda i fatal pels bovins domèstic però també per búfals i iaks. Els porcs poden també infectar-se. No afecta a éssers humans. No és tan persistent com el VFA a les condicions ambientals, i a la dessecació. La malaltia és extremadament contagiosa i la taxa de mortalitat excedeix el 90% de la població susceptible. La infecció es transmet per contacte directe entre animals mitjançant aerosols virulents, encara que la transmissió a distància (en un radi de 100 m) és possible. Els porcs poden infectar-se per via oral, al consumir productes contaminats. Altre cop no hi ha tractament efectiu post-exposició però sí vacunes efectives (la primera és de fa més de 80 anys).

 

  • Virus de la pesta porcina africana (VPPA). Un virus que causa una malaltia infecciosa a porcs domèstics i silvestres, de qualsevol raça i a qualsevol edat. Malaltia aguda amb alta taxa de mortalitat. Altre cop, humans no susceptibles. Se sap que el virus pot sobreviure per diversos mesos en derivats frescos o assecats de porcs; la malaltia es pot transmetre a llargues distàncies. Aquest virus ha tornat a Europa i és ja un problema seriós pel la frontera est de la UE. No hi ha cap vacuna disponible ni tractament post-exposició eficaç. Un molt bon candidat (i així ho va entendre l’antiga Unió Soviètica que la va incloure en el seu arsenal).

 

  • Virus de la pesta porcina clàssica (VPPC). Aquest pestivirus de la família Flaviviridae, que reté infectivitat encara que sigui sotmès a processos de curat o salat (recordeu el pernil salat) causa el que també s’anomena “hog cholera” o febre porquina. El nom no fa la cosa, i la cosa en tot cas és una malaltia altament contagiosa que es transmet per contacte directe entre els porcs, però també indirectament a través de fomites i qualsevol altre material contaminat, o per ingestió de carn infectada. Clínicament semblant a la malaltia causada per VPPA. De nou, els éssers humans no són susceptibles. HI ha vacunes disponibles però, com en el cas de VFA, per evitar restriccions a les exportacions d’animals o carns, únicament s’empren en casos d’emergència. No hi ha cap tractament post-exposició. Mai s’ha fet servir com a arma biològica però, de nou, la URSS la inclogué al seu programa…però també els EEUU, que fins i tot feu experiments reals amb bombes que es llençaren sobre una granja de porcs a Florida (Wilson et al., 2000) amb resultats “efectius”.

 

  • Virus Newcastle (VN), causant de la malaltia de Newcastle. És un virus amb moltes soques diverses que varien àmpliament en la seva virulència, classificant-se en funció d’aquesta en tres grups. En tot cas el virus és altament contagiós i causa brots explosius, de desenvolupament fulgurant (pot influir la soca vírica i la espècie aviar i l’edat dels exemplars). Es transmet per contacte directe amb animals infectants o vectors (“carriers”), per inhalació. La infecció es pot adquirir, també, a través de fomites, o per ingestió de menjar contaminat, o contacte amb pols o plomes contaminades. Sí afecta a humans, que poden desenvolupar conjuntivitis, però no és un infecció fatal. Hi ha vacunes efectives contra VN; altre cop no hi ha tractament un cop la infecció es manifesta. Mai s’ha fet servir com a arma biològica però, de nou, la URSS la inclogué al seu programa…però també els EEUU al seu programa, que s’abolí el 1969.

 

  • Virus d’influença aviar altament patogènica (HPAIV, de High Pathogenic Avian Influenza Virus, en anglès). Les soques d’aquest virus, bàsicament variants amb hemaglutinina 5 i 7, causen una malaltia altament letal a l’aviram. El principal mecanisme de transmissió del virus és per contacte amb altres animals infectats, persones o fomites contaminades. Hi ha vacunes disponibles però l’alta variabilitat vírica juga en contra. No hi ha tractament específic post-exposició disponible. Sí afecta a humans si bé tot apunta q que el contacte amb l’aviram infectat per assolir infecció ha der ser constant i intens. Un cop infectat l’humà, la transmissió entre humans és inconstant i no es manté en el temps.

 

Òbviament aquest llistat no és exhaustiu, de fet es pot fer molt més llarg, ja que es pot incloure qualsevol causant de malaltia animal que tingui el potencial de propagar-se ràpidament i causar importants pèrdues econòmiques en una o més especies de producció o domèstiques. Així tindríem el cas del virus de la llengua blava, o el virus de la estomatitis vesicular, o el virus de la pesta del petits remugants (peste des petits ruminants), o la malaltia equina africana (African Horse sickness)…i més, si pensem en desenvolupaments humans aprofitant les noves eines biotecnològiques. En alguns casos, però, l’alliberament del virus per una acció bioterrorista hauria d’anar acompanyada amb l’existència natural del vector artròpode competent que permetria la segona volta de propagació, i les successives, com seria els casos del virus de la llengua blava i la malaltia equina africana.

 

El problema que se li plantejaria al terrorista seria però, quin escollir? Què li he de demanar a l’agent infecciós per poder tenir un certa probabilitat d’èxit? Bé, són preguntes que mirarem de contestar en una pròxima entrada.

 

Perquè aquesta, aquesta és una altra història.

 

Referències

  • Huxsoll DL, Patrick III WC, Parrot CD. 1987. Veterinary services in biological disasters. J. Am Vet Med. Assoc. 190(6):714-722.

  • Livingston NC, Douglas JD. 1984. CBW: the poor man’s atòmic bomb. National Security papers, vo. I, Cmbridge MA: Institute for Foreign Policy Analysis.

  • Wilson TM, Logan-Henfrey L, Weler R, Kellman B. 2000. A Review of agroterrorism, biological crime and biological warfare targeting animal agricultrue. In: Brown C, Bolin C, editors. Emerging diseases of animals. Wshington DC, ASM Press.

Comentaris virus-lents (205): To DURC or not to DURC? Aquesta és la qüestió.

 

L’ús de la tecnologia per obtenir avantatge en un conflicte és molt antic. Passar de la pedra al bronze; passar del bronze al ferro, etc. La historia està plena de com avenços tecnològics i científics s’ha adaptat per a la guerra o bé han nascut de la guerra. Ben bé es pot dir que tota tecnologia té un ús dual (un cotxe és “per se” pacífic però si se’l fa servir per atropellar indiscriminadament és un arma terorrista). I molta biologia ara mateix descansa en la tecnologia. Ja no es tracta de llençar cadàvers infectats per sobre les muralles o regalar flassades infectades a indis per aconseguir la seva rendició (podeu veure al respecte en aquest blog https://comentarisviruslents.org/2015/05/02/comentaris-virus-lents-107-el-bioterrorisme-no-es-una-nova-estrategia/) si no de modificar microorganismes en la direcció que desitgem però també en aquella que potser no desitgem.

 

L’atac per àntrax va generar una allau de normatives als EEUU que implicarem regulacions sobre la recerca biològica i l’aparició duna llista de agents i toxines seleccionats (o selectes). Uns pocs anys després, i entre altres exemples, la tecnologia de la biologia molecular permeté la síntesi química de poliovirus i la reconstrucció del virus de la influença pandèmica de 1918; en el dos casos dos virus extints, o quasi extints que semblaven es podien tornar a produir en el backyard, al patí de darrera (algun dia caldrà explicar que això ni de bon tros és tan fàcil).

 

Per gestionar un problema el primer que cal fer el definir-lo i acotar-lo. Que era, en aquell moment, o és ara la recerca d’ús dual (Dual Use Research, o DUR) a les ciències biològiques (tinguem present que en principi hi ha una prohibició total de fer servir armes biològiques, segons la Biological Weapons Convention de 1972). Podríem dir que una “cosa” (i per cosa volem dir tecnologia però també la informació sobre aquesta) és d’ús dual quan es pot fer un ús beneficiós o malvat/criminal. Tanmateix si volem recórrer a una definició canònica podem agafar la que va formular la National Science Advisory Board for Biosecurity (NSABB)…”life Science research that, based on current understanding, can be reasonably anticipated to provide knowledge, information, products, or technologies that could be directly misapplied to pose a significant threat with broad potential consequences to public health and safety, agricultural crops and other plants, animals, the environment, material and national security.

 

En principi una recerca d’ús dual ha d’aixecar certa prevenció o preocupació (que cal gestionar). Estem llavors parlant de la DURC, o Dual Use Research of Concern, en anglès. I dintre de la DURC es troba la controvèrsia GOF, o Gain Of Function.

 

GainOfFunction-GOF-1082214doctor

Què és Gain Of Function? En el nivell més planer es pot traduir com guany de funció i és exactament això, donar una nova propietat o habilitat a una entitat biològica. Els experiments GOF poden donar resultats molt desitjables, com és el cas de la insulina recombinant, que és l’habitualment subministrada i que es genera a partir d’un microorganisme que expressa aquesta proteïna, que no estava inicialment al seu genoma. També és un resultat d’una aproximació GOF, les noves variants vegetals que són més persistents a les plagues o resisteixen millor la dessecació. Però si tenim l’habilitat de fer aquestes manipulacions també vol dir que també som capaços tècnicament de modificar-los amb noves propietats que incrementin la seva virulència i / o transmissibilitat.

 

Això és el que passà el 2011 i que ja va ser comentat en una entrada del blog (veure https://comentarisviruslents.org/2016/04/01/comentaris-virus-lents-164-concepte-gain-of-function-la-ciencia-sempre-guanya/). En resum, dos articles mostraven “com” incrementar la transmissibilitat del virus de la influença aviar altament patogen H5N1. El problema no era només que la informació fos pública si no que malauradament la transmissibilitat s’aconseguia amb uns pocs canvis i semblava fàcil d’assolir per persones amb habilitat i medis convencionals (encara que jo aquí discrepo en l’abast). Després de controvèrsies i certs intents d’amagar o classificar la informació com a reservada, els articles es van publicar el 2012 sense retallades. Una altra erupció aparegué el 2014, aquest cop amb la influença pandèmica. En tots els casos es tractava de treballs de gran vàlua que aixecaven però preocupació des d’els punts de vista de la bioseguretat i la bioprotecció. Aquestes controvèrsies generaren un nou acrònim, PPPs, o Potential Pandemic Pathogens amb el que es volia etiquetar aquells patògens millorats, i per tant nous, amb majors capacitat de transmissibilitat o virulència.

 

D’aquella època ve la moratòria d’execució d’estudis GOF operativa als EEUU i que s’ha aixecat a finals de l’any passat 2017. Unes “portes al camp” com una casa de pagès perquè molta recerca GOF es fa fora de les fronteres dels EEUU i amb fons que no són controlats o derivats pel govern nord-americà.

 

A més, per acabar d’embolicar el tema no hi ha normes clares al món editorial. Quan a les revistes científiques senyeres els arriba un article GOF, en la immensa majoria dels casos que conec s’acaba publicant l’article en tota l’extensió, sense cap o poques restriccions i amb editorials que fan una certa olor a “qui s’excusa, s’acusa” ja que es defensen obvietats com són la vàlua científica de la recerca publicada.
I a banda de les revistes científiques serioses, que poden pre-publicar abans d’una revisió, ara tenim centenars, milers de revistes que permeten la publicació pagant unes taxes. Encara que és molt improbable que es publiqui informació valuosa en aquestes revistes, ja que acostumen a tenir un baix índex d’impacte en la comunitat científica, són forats molt evidents en una estratègia de contenció.

 

El problema és que la tecnologia la tenim i la podem fer servir però no sembla que hi hagi manera de consensuar quins experiments estan justificats pel guany que impliquen encara i els costos/risc potencials associats. I el problema és que a la primera controvèrsia mediàtica (recordeu, el 2012) no hi havia gaire desenvolupades alguna de les tecnologies actuals com CRISPR/Cas9 o una més eficient biologia sintètica. I el problema és que els guanys no poden ser mesurats en temps real o immediat mentre que les assumpcions de riscos catastròfics sí que es porten al present immediat. I que sense valors numèrics reals, moltes avaluacions de risc són purament qualitatives o semi-quantitatives, divergeixen fortament en funció de la subjectivitat de l’avaluador. De fet, de la controvèrsia del 2012 hi ha algunes publicacions que suggerien que un accident greu o molt greu associat a un patogen sota GOF ocorreria en pocs anys (veure referencies al final). Així el 2014 a partir de dades, aportades pel CDC sobre infeccions laboratorials inadvertides en el període 2004-2010, s’arribava a la conclusió que un escapament era possible amb un 0,2% de probabilitat per laboratori i any. Per tant si 50 laboratoris hi treballen durant 10 anys la probabilitat al final d’aquest 10 anys és del…100%. S’ha de dir, però, que portem més de la meitat del període i no s’han vist cap escapament significatiu i hi ha més de 50 laboratoris treballant amb Ebola, SARS, MERS, HPAIV o influença pandèmica i altres patògens.

 

Tot això foragita el personal i el finançament lluny d’aquests patògens que són prou perillosos com per ser subjectes d’una DURC. I això es perillós perquè en els darrers anys hem patit o estem patint, una epidèmia d’Ebola, la emergència de Zika, la progressió de Chikungunya, MERS coronavirus a la Península Aràbiga i Corea, etc. Si la gent no fa recerca, ni que hi hagi el perill que resulti en un risc d’ús dual, mai estarem prou preparats per fer front a la propera epidèmia (us recomano que aneu a http://www.who.int/blueprint/en/ que marca les prioritats de la OMS per aquest any 2018).

 

Particularment jo soc un fervent seguidor del principi de Hanlon que diu…. “Mai atribueixis a la maldat el que pot ser explicat per la estupidesa”. Si substituïu estupidesa per incompetència tenim l’escenari. I el escenari és que sembla molt més probable que si tenim algun problema vingui d’un escapament involuntari d’un patogen modificat, o silvestre, d’alguna de les centenars, milers d’instal·lacions de nivell de Bioseguretat 3 que hi ha al món, o de la cinquantena d’instal·lacions de màxima biocontenció (nivell 4) que d’una acció terrorista o criminal. I no està tan lluny de la nostra imaginació senzillament…perquè ja ha passat. Nomes cal recordar els gaps de bioseguretat que es van donar (i es van fer públics) al CDC i altres laboratoris governamentals dels EEUU a l’any 2015 (podeu consultar aquest mateix blog a https://comentarisviruslents.org/2015/02/26/comentaris-virus-lents-88-incident-ebola-al-cdc-el-diable-esta-als-detalls/ o https://comentarisviruslents.org/2014/07/25/comentaris-virus-lents-25-pero-que-mheu-enviat/). Per tant és bastant més probable que un benintencionat maldestre (un tema de Bioseguretat, o biosafety) acabi provocant el problema (l’epidèmia) que no un malintencionat ben informat (un terrorista, o un biocriminal, un tema de bioprotecció, o biosecurity, com diuen mar enllà).

 

Només unes poques instal·lacions d’alta i màxima biocontenció fan projectes DURC. Potser una via es reduir encara més aquest nombre ja sigui reglamentàriament: al mon hi ha ara mateix dos únics laboratoris que poden tenir i treballar la verola (smallpox), o en funció de registres històrics (laboratoris sense incidències o amb molts bon registres en Bioseguretat serien els únics amb permís, o procedimentals (obligació de complir un estàndards molt alts respecte entrenament i capacitació de personal, tecnologia punta de la instal·lació i traçabilitat).

 

 

englisch_biostoffv-G-wordml02000001

 

Qui tot ho vol, tot ho perd…però també es podria dir que qui vol molt poc, en perd molt també. Fer una llista d’agents selectes d’abast estatal i vigilar atentament tot el que es fa amb ella, qui els té i sota quines condicions, pot donar una falsa impressió de seguretat. Cert que tot el que estigui a la llista estarà controlat (dins de les teves fronteres) però…hi ha molt més enllà de les teves fronteres, i aquest patògens seleccionats es poden obtenir de forma natural (hi ha descrits alguns intents d’obtenir Ebola amb finalitats criminals a partir de mostres d’afectats d’una epidèmia) i fora de la llista també hi ha patògens d’ús dual de potencial més que considerable.

 

En definitiva, hi ha molta recerca actual amb patògens perillosos repartida per centenars de centres d’alta i màxima biocontenció al món. D’aquesta la gran majoria no cau dintre de la definició de la DURC i es continua fent sense aixecar gaire controvèrsia. És un petit subset d’experiments (aquells que poden millorar la letalitat o la transmissibilitat d’un patogen ja perillós) els que generen nerviosisme i és aquest grup el que necessita una aproximació internacional comuna, que generi un estàndard assumible per a la majoria.

 

Potser no podem recórrer exclusivament a una avaluació de risc que es fa un cop l’experiment dissenyat i fins i tot finançat i en vies d’execució perquè com ja he dit moltes d’aquestes avaluacions estan un pel viciades o per biaix dels avaluadors o per la manca de dades empíriques o quantitatives. Potser el resultat no és el que necessitem, si no la eina. Preguntar-se pels riscos i els possible perills promou una anàlisi i discussió més profunda, la qual cosa millora indefectiblement el disseny experimental i els protocols de bioseguretat. No és poc però pot no ser suficient.

 

Potser el que cal es preguntar-se què volem investigar, quines preguntes volem contestar i que són realment valuoses i permetre la recerca que intenti contestar-les tot i el risc que hi pugui haver. I això fer-ho des d’una governança internacional per bé que les decisions serien estatals. Tot sigui per mancomunar el risc. Perquè de risc zero, com tots i totes ja sabeu, no n’hi ha.

 

 

Però aquesta, aquesta és una altra història.

 

• Klots, LC, and Syvester, EJ. (2014). The consequences of a lab escape of a potential pandemic pathogen. Frontiers in Public Health. 2, 1-3 doi: 10.3389/pubh.2014.00116.
• Klotz, LC, and Sylvester, EJ. 2012. The unacceptable risks of a man-made pandemic. Bulletin of teh Atomic Scientist.

Comentaris virus-lents (190): No sols circula H5N8…més perillós és H7N9.

Estem molt ocupat i preocupats per la soca H5N8 de la grip aviaria…Si fos “el” virus de la grip aviaria estaria un pel emprenyat…jo envio les meves soques en un núvol de genomes en continua variació a infectar el que trobin…no tinc objectius selectes…no tinc una divisió aviar, una porquina o una humana…o no com perquè mereixin un adjectiu qualificatiu. Bé, com deia estem molt ocupats per la soca H5N8, recordem una soca d’alta patogenicitat en aus i nul•la afectació descrita en humans. Aquesta nul•la afectació s’explica grosso modo pel fet d’un reconeixement diferencial de receptors a les cèl•lules epitelials de l’aparell respiratori de aus i esser humans (veure entrada 188). Però circulants al mon ara mateix hi ha desenes i desenes de soques de la grip i algunes no mostren tanta recança a infectar humans.

 

h7n9-february-map_2017_02_22
Distribució del casos humans de H7N9 a la Xina, en vermell, els recents. Font: http://www.fao.org/ag/againfo/programmes/en/empres/H7N9/index.html

 

La soca H7N9 sí és una soca zoonotica. Va emergir el març del 2013, com no, a la Xina i des d’ aleshores ha causat més de 1230 casos en éssers humans…el nombre d’infectats asimptomàtics serà probablement de desenes de milers. La taxa de mortalitat entre els casos clínics és del 35-40% (comparable doncs a MERS Coronavirus i Ebola, i superior a la del SRAS Coronavirus, per exemple). El 80% dels casos clínics descrits en humans han tingut un contacte directe o indirecta amb aus vives abans de l’inici de la simptomatologia: visites a mercats d’aus vives, manipulació i/o transport d’aus, escorxat de les mateixes, etc. Aquests casos es circumscriuen a la Xina continental (i més específicament a tres províncies, que suposen 2/3 parts dels casos humans, Zhejiang, Guangdong i Jiangsu, cada any des del 2013) amb uns pocs casos a Macao, Hong Kong, Taiwan però ja s’ha donat una trentena de casos de turistes que han manifestat la simptomatologia en tornar a les seves cases. La raó, la de sempre. Un brou, generat pel comerç i transport humà, de contacte proper en condicions sovint molt poc segures sanitàriament, atestades, estressades, com és el generat per mercats d’aus vives a la immensa majoria de pobles grans i ciutats a motles províncies xineses. D’allà va sorgir (o així s’ha resseguit) la soca H7N9 que cada hivern (hemisferi nord, des de desembre fins a març-abril) en onades anuals ha anat fent la seva collita…I aquest 2016-17 és més preocupant perquè es la onada més intensa des de la del 2014 (segona onada).

 

h7n9-fig3_human_week_2017_02_22
Gràfica dels casos humans; es veuen clarament les onades anuals. Font: http://www.fao.org/ag/againfo/programmes/en/empres/H7N9/index.html

 

La soca d’influença A (h7N9) va aparèixer com a resultat de diversos arranjaments o recombinacions d’altres soques de virus influença durant el 2012: H7N9 té quatre progenitors, quatre soques que li han cedit part del seu material genètic, i que havien estat prèviament detectades en aus silvestres (virus de H7 i virus amb N9) i pollastres (dues soques diferents de virus H9N2) a Àsia.

 

A cap de les onades s’ha pogut establir una selectivitat del virus per raó de sexe o edat a la població humana…si bé la major, quasi exclusiva, afectació té a veure amb gent de pagès, ramaders i comerciants d’aus vives i els seus contactes propers.

 

La simptomatologia és l’habitual; febre i tos amb molt freqüència, vòmits i diarrea menys freqüent. Es consens general que H7N9 és menys greu que H5N1 però molt més greu que la grip pandèmica H1N1 del 2009. L’estimació és que el ratio entre un cas fatal i casos simptomàtics (que inclou els que requereixen o no hospitalització) és mou en una forquilla de 160-2.800 per cada 100.000 casos simptomàtics.

 

Quina és la única bona noticia? Que sense descartar-se, la transmissió persona-persona no s’ha demostrat encara. Sembla que cal molta proximitat i continuïtat en el tracte amb animals o zones contaminades com per agafar la infecció, i un cop agafada no s’han descrit transmissions sostingudes (en aquesta darrera onada, 2017, s’han detectat dos clústers, cadascun amb un parell de casos, però sense cap transmissió terciària). I això es deu a que no s’ha detectat canvis en els marcadors genètics que implicarien adaptació a humans i/o resistència enfront antivirals, que es mantenen com a les onades anteriors. De fet per a totes les onades des d’el 2013 la taxa de mortalitat s’ha mantingut constant.

 

Per trencar més esquemes, la soca H5N8 és una soca d’alta patogenicitat (HPAI en anglès) que no causa infecció en humans, i la soca H7N8 causa infecció en humans i…no és una soca d’alta patogenicitat en aus. És una soca de baixa patogenicitat, el que diem Low pathogenic avian influenza (LPAI). Les característiques genètiques d’aquesta soca li permeten lligar-se (amb una eficiència variable, als receptors cel•lulars pel virus influença en humans i aus (àcid siàlic alfa-2,6 o àcid siàlic alfa-2,3 respectivament). Però se saben de diversos casos, dins de les soques H7, de LPAI, que han derivat, evolucionat, cap a HPAI, com va passar a Xile (202) i Canada (2004), i a diversos països europeus. De tota manera mentre es mantingui com LPAI únicament es podrà detectar per vigilància activa ja que no causa mortalitat ni simptomatologia evident a les aus (que seria el que detectaríem en una vigilància passiva). És a dir, podem estar al costat d’una au carregada de H7N9 i no “veure” res anormal.

 

Com quasi sempre estar al costat d’un perill no vol dir caure-hi…hi ha ”coses” que es diuen concentració ambiental, rutes de transmissió, vies d’entrada, probabilitat de contacte, pràctiques de risc, mesures de higiene, estat immunològic, fons genètic, que modificaran la probabilitat final per a cadascun.

 

 

Però aquesta, aquesta és una altra història.

Comentaris virus-lents (189): I què diu l’avaluació de risc de ECDC de la soca H5N8?

I ara un bonus track pel que fa a informacions sobre la soca H5N8.

 

L’avaluació de risc que va fer la ECDC (European Center for Disease Prevention and Control) fa uns pocs mesos indicà que el personal exposat ha d’estar prou protegit enfront la infecció, la qual cosa implica l’ús d’equips de protecció individual (EPIs) i en particular de la protecció respiratòria. Circumscriu correctament el personal en risc al personal en contacte directe amb els animals, que els maneguen o manipulen ja siguin vius, ja siguin els seus cadàvers, ja sigui netejant i descontaminant les instal·lacions afectades (grangers, veterinaris, equips de sacrifici, etc.) per tornar-les a posar en servei: Aquests EPIs han de ser adequadament eliminats abans de sortir de la instal·lació afectada, complint mesures de bioseguretat estrictes per evitar exportar el problema a l’exterior de la granja, o el que seria pitjor a un altra granja.

 

Algú haurà arrufat les celles…equips de protecció respiratòria? Però que no havíem quedat a l’entrada anterior que era de transmissió majoritàriament fecal? Ben pensat, però us recordo (als que hàgiu estat) que una nau d’una granja avícola està plena de moviment, de pols, i de femtes que es resuspenen amb les trepitjades i els moviments dels animals, i de les persones que hi feinegen. Millor portar protecció respiratòria i fins i tot ocular per evitar que la pols o les femtes arribin a les mucoses respiratòries o oculars.

 

L’avaluació de risc també encoratja a la vacunació de la grip estacional a tot el personal involucrat, grangers i veterinaris en primera instància, no tant per la grip estacional de cada any, que també, si no per evitar la possibilitats de co-infeccions (dues infeccions per dues soques, una humana i una aviar, per exemple, que coincideixen en el temps i l’individu i que pot permetre l’aparició de combinacions, reassortments, noves de hemaglutinina (H) i neuraminidasa (N) potencialment més patògenes o més transmissibles.

 

Aquesta avaluació indica que, pel personal involucrat en les tasques de neteja i buidat sanitari (el sacrifici i eliminació dels cadàvers), és obligatori un seguiment de la salut per un mínim de 10 dies; en alguns països s’inclou tractament amb antivirals (oseltamivir) en aquest període. Veterinaris, grangers i altre personal han d’informar de símptomes compatibles amb la grip, febre o conjuntivitis per evitar esdevenir transmissors secundaris de la infecció.

 

Clar que fins ara, tot indica que la soca H5N8 no es transmet als éssers humans…amb el permís de la variabilitat vírica, és clar.

 

Però aquesta, aquesta és una altra història.

 

 

Per anar al document original:

http://ecdc.europa.eu/en/publications/Publications/risk-assessment-avian-influenza-H5N8-europe.pdf

Comentaris virus-lents (188): I ara como inactivem H5N8 un cop ens ha entrat…

Estem en plena onada de la soca H5N8 del virus de la grip aviaria a Europa…veurem com es van desenvolupant els esdeveniments de la seva progressió però el motiu d’aquesta entrada no és aquest, és parlar de com inactivar el virus, de com descontaminar o desinfectar un àrea, element o estri contaminat.

cabezal_influenza_cataluna

de: https://avicultura.info/influenza-aviar-control-cataluna/

El primer fet a constatar és que la inactivació és un procés físic o químic (també pot ser biològic però no embolicarem la troca) que no és massa depenent de soca. La inactivació actua sobre el embolcall, la càpside o l’àcid nucleic; per a tots els virus de influença A que ens ocupen les diferències es troben a nivell de seqüència, ja sigui de nucleòtids o aminoàcids però no tenen un trasllat evident a una major o menor estabilitat del embolcall o de la càpside (o no ha estat descrit fins ara). Un H5N8 és “igual” que un H5N1, un H7N1 o un H7N9 quan s’enfronta a una solució alcohòlica, una dilució de lleixiu o l’acció de la llum ultraviolada. Sí que s’ha trobat algunes diferencies entre soques en condicions ambientals, en principi, menys agressives. Fent una imatge gràfica, tots els virus influença A responen igual quan els disparem un obús però no quan els disparem amb una fona de forma continuada.

Sí té molta importància, però, el medi circumdant. Per fer una bona desinfecció ens cal abans haver retirat la major part de la matèria orgànica interferent (això pot semblar fàcil, relativament, en estris, aparells, maquines i roba però no ho és gens en naus o instal·lacions que han contingut animals). Aquesta retirada o reducció és fonamental. Si no es fa així pot passar que el consum de desinfectant sigui superior, o molt superior al teòric ja que cal comptar que una part del mateix no es dedicarà a inactivar el virus si no que quedarà segrestat i inutilitzat per la matèria orgànica.

I contra el pensament generalitzat el virus de la influença aviar H5N8, com les altres soques HPAI (Highly Pathogenic Avian Influenza), s’excreta majoritàriament a través de les femtes; certament també ho fa en menors quantitats per tràquea i vies respiratòries però la via principal és la fecal. I parlem de paraules majors, del ordre de 10.000.000 virus infecciosos per gram de femtes en animal infectat. Les femtes, quan s’assequen, poden ser resuspeses pel vent, per accions mecàniques com escombrats o trepitjades fortes i llavors passen a l’aire si bé de forma inestable (acaben tornant al terra o sobre objectes i superficies). A més un cop infectat l’au pot estar excretant el virus per dies…fins a la seva mort, que en el cas d’aus infectades per HPAI és pocs dies després.

 

SANT GREGORI GIRONES SOCIETAT  GRANJA ANECS 23 02 17 FOTO ICONNAde: http://www.elperiodico.com/es/noticias/medio-ambiente/agricultura-ordena-sacrificio-granjas-patos-gripe-aviar-5859245

Llegim ara aquest petit extracte…

Tras la eliminación de los cadáveres, todas las naves o recintos en los que se hayan alojado las aves de corral u otras aves cautivas, los pastos o terrenos, los vehículos utilizados para su transporte o el de sus cadáveres, carne, piensos, estiércol, purines, yacija y cualquier otro material o sustancia que pueda estar contaminado, serán sometidos a un procedimiento de limpieza y desinfección…. Se certificará la misma mediante acta oficial.

A: MANUAL PRÁCTICO DE OPERACIONES EN LA LUCHA CONTRA LA INFLUENZA AVIAR en: http://rasve.magrama.es/Recursos/Ficheros/Manuales/MARM/78_Manual%20IA%20Actualiz%20septiembre%202014.pdf

 

En el buidat d’una granja es donen una sèrie d’accions successives i complementàries. S’han d’eliminar els animals de la forma més humanitària possible; s’han de processar els seus cadàvers perquè no puguin transmetre la infecció; i s’ha de desinfectar la instal·lació per poder tornar a entrar animals que no s’infectin altre cop amb virus encara existents a la mateixa…si tornen a entrat “de novo” pot ser un problema de maneig o de manca de bioseguretat atribuïble al granger (en el cas d’instal·lacions tancades; quan són obertes, el medi ambient mana). Desenvolupem una mica cada acció.

 

La neteja i la desinfecció de les explotacions infectades s’ha de dur a terme seguint un protocol bastant estricte.

Cal una neteja i desinfecció prèvies: En el moment de matar les aus caldrà fer-ho de forma que s’eviti o redueixi al mínim la dispersió dels virus; per això és convenient portar els equips temporals de gasificació i desinfecció al costat de la nau, el subministrament de vestimenta protectora, dutxes, i sistemes de descontaminació de l’equip, instruments i elements utilitzats, així com anular, o no alimentar, el sistema de ventilació.

Tot l’equip portàtil es desmantellarà per a la seva neteja i desinfecció separada. Es desinfectarà tot el material que s’hagi utilitzat en el sacrifici (roba, botes, estris, vehicles, bolquets, pales, etc.). Els materials d’un sol ús seran retirats de forma segura (recipients tancats i hermètics) per la seva posterior eliminació (idealment incineració). Les instal·lacions elèctriques i equips electrònics s’han de protegir per al seu posterior tractament específic, que normalment implica una fumigació amb formaldehid.

Les parts de l’explotació en què s’haguessin allotjat els animals sacrificats, així com parts d’altres contaminades durant el sacrifici o la necròpsia, es fregaran i netejaran de tota matèria orgànica emprant un producte de neteja de les superfícies, començant pel sostre o teulada, a continuació les parets, de dalt a baix i finalitzant per terra. Després de la neteja es ruixen les superfícies amb desinfectants autoritzats (veure un llistat bàsic més a baix). Les operacions de neteja (aigua i detergent), a fons, han de ser prèvies a les operacions de desinfecció per eliminar gran part de la matèria orgànica que impedeix l’adequada actuació de molts dels desinfectants. El desinfectant aplicant romandrà sobre la superfície tractada durant almenys 24 hores (és a dir, no esbandirà, es deixarà assecar).

Després es farà una neteja i desinfecció finals, que implica un nou desengreixat de les superfícies per treure brutícia residual i aclarit amb aigua freda tornant a ruixar de nou les superfícies amb desinfectant. Transcorreguts set dies es tornaran a repetir totes les operacions de neteja i desinfecció.

 

Com eliminar el llit i les femtes dels animals? El llit i els fems de l’explotació, un cop eliminats els animals, s’hauran de tractar mitjançant un mètode idoni per eliminar el virus. Els mètodes contemplats per la legislació europea són: tractar-los amb vapor fins assolir 70ºC; destrucció per incineració o enterrament a una fondària tal que impedeixi l’accés d’aus silvestres i altres animals,;o ser sotmesos a un compostatge/compactació que generi calor interna, ruixats amb desinfectants i deixats almenys per 6 setmanes abans de qualsevol altra manipulació. Umm, 70ºC, incineració, calor interna? L’explicació és obvia; està més que demostrat que independentment de la soca aquests virus són molt poc estables tèrmicament i temperatures de 56-60-65ºC determinen inactivacions de 4-5 o més log (això vol dir inactivar 10.000-100.000 virus) en períodes curts de temps 30 min., mentre que temperatures de 70-80ºC o superiors poden assolir la inactivació total en terminis molt més curts, 1-5 min.

Qualsevol moviment de llit o femtes d’animals, al lloc on seran eliminats o bé a un lloc d’emmagatzematge transitori abans de la seva destrucció o tractament, es realitzarà en vehicles o recipients tancats i estancs, sota supervisió oficial, per evitar propagació ulterior del virus.

Si es determina que no és possible netejar i desinfectar alguna de les explotacions o part de les mateixes, es podrà prohibir l’entrada de persones, vehicles, aus de corral, aus captives, mamífers d’espècies domèstiques o objectes a aquestes explotacions o part de les mateixes per un mínim de 12 mesos.

 

L’elecció dels desinfectants i dels procediments de desinfecció es farà en funció de la naturalesa de les explotacions, vehicles i objectes que es s’hagin de tractar.

Els desinfectants que s’hagin d’utilitzar i les seves concentracions hauran estat prèviament autoritzats i s’utilitzaran seguint, o bé les recomanacions del fabricant quan es disposi d’elles o bé les instruccions del veterinari oficial.

Els desinfectants, productes químics, i / o procediments que pot ser necessari emprar són els següents:

Objecte a desinfectar Desinfectant / producte químic / procediments
Aus vives Eutanàsia (diòxid de carbono;dislocació del coll)
Canals Enterrar o cremar
Galliners/equips Sabons i detergents; agents oxidants i àlcalis
Humans Sabons i detergents
Equips elèctrics Fumigació amb formaldehid
Aigua Drenar al camp quan sigui possible
Pinso Enterrar
Efluent, fems Enterrar o cremar; àcids, àlcalis
Vivendes Sabons i detergents, agents oxidants
Maquinària, vehicles Sabons i detergents, àlcalis
Roba Sabons i detergents, agents oxidants i àlcalis

 

I el llistat de detergents i desinfectants genèrics d’elecció seria el següent:

Sabons i detergents: temps de contacte 10 minuts.

Agents oxidants:

  • hipoclorit sòdic: líquid, diluir fins a 2-3% de clor disponible, no és adequat per a materials orgànics, degut a l’emissió de cloramines i gasos amoniacals. Temps de contacte 10-30 minuts.

  • hipoclorit càlcic: sòlid o en pols, diluir fins a 2-3% de clor disponible (20 g/litre si és pols, 30 g/litre si és sòlid), no adequat per a materials orgànics. Temps de contacte 10-30 minuts.

  • Virkon®: 2% (20 g/litre). Temps de contacte 10 minuts.

Àlcalis: (no utilitzar amb alumini o altres aliatges similars)

  • hidròxid sòdic (NaOH): 2% (20 g / litre). Temps de contacte 10 minuts.

  • carbonat de sodi (Na2CO3. 10 H2O): 4% (40 g/litre si és en pols, 100 g/litre si està cristal·litzat), recomanat per a ús en presència de materials orgànics. Temps de contacte 10-30 minuts.

 Àcids:

  • àcid clorhídric (HCl): 2% (20 ml/litre), Corrosiu, utilitzar només si no es disposa d’altres productes químics.

  • àcid cítric: 0.2% (2 g/litre), segur per descontaminar la roba i el cos. Temps de contacte 30 minuts.

Gas formaldehid: tòxic, només si no fos possible utilitzar altres productes. Temps d’exposició 15-24 hores.

Una llista més extensa i detallada la trobareu a:

http://www.fao.org/avianflu/en/disinfection.html

 

En resum, es cerca portar l’embolcall i/o la càpside del virus a la seva degradació. Els detergents i tensioactius actuen sobre la bicapa lipídica del embolcall desorganitzant-la i trencant-la. Els pH extrem d’àcids i àlcalis són útils ja que els virus influença són molt sensibles a pH força àcids (per sota de 3) o força bàsics (per sobre de 12). Qualsevol agent oxidant com el Virkon o el lleixiu actua sobre els radicals lliures del proteïnes de càpside i embolcall degradant-les. Si la concentració de lleixiu és prou alta fins i tot pot trencar els àcids nucleics per punts inespecífics.

 

Eliminació de cadàvers:

Els mètodes autoritzats de destrucció dels cadàvers són: l’enterrament, la incineració i l’enviament a plantes de transformació de cadàvers i subproductes carnis. L’elecció del mètode de destrucció dependrà de diferents factors, com: la localització de les naus infectades, el nombre d’animals de l’explotació, el tipus d’explotació, la disponibilitat i característiques del terreny per efectuar la incineració o l’enterrament i la proximitat a l’explotació d’una planta de transformació.

En qualsevol cas els cadàvers de les aus sacrificades s’han de ruixar amb desinfectant i ser retirats de l’explotació en vehicles o recipients tancats i estancs. Els teixits o la sang que s’hagin vessat durant sacrificis o necròpsies s’ha de recollir amb cura i eliminar juntament amb les aus sacrificades.

Si el mètode escollit és l’enterrament:

  • Els cadàvers a la fossa han de ser ruixats amb calç viva entre capa i capa que serà distribuïda uniformement.

  • Per tancar la fossa es cobrirà, com a mínim, amb 1,5 metres de terra.

  • Abans de cobrir la fossa totalment es llançarà tot el material d’un sol ús, vestidors, calçat, utilitzat pel personal durant les operacions.

  • L’àrea al voltant de la fossa serà ruixada amb un desinfectant adequat.

  • L’entrada a aquesta fossa serà tancada i es prohibirà l’accés. Vigilar l’entrada de gossos, gats, ocells, etc. als voltants de la fossa.

  • Tot el material i equips emprats en aquestes operacions han de ser apropiadament desinfectats.

Si la fossa d’enterrament està situada fora de l’explotació, caldrà que estigui el més allunyada possible de camins públics, habitatges i altres explotacions però alhora que sigui de fàcil accés pels camions i maquines excavadores.

Si el mètode d’elecció és la incineració, caldrà emprar una gran quantitat de material inflamable per a la incineració dels cadàvers i caldrà una supervisió i custodia constant del material a incinerar. Això porta el problema logístic de com fer arribar els cadàvers a la instal·lació incineradora; com bé sabeu no n’hi ha gaires incineradores.

En qualsevol cas, els vehicles utilitzats per al transport, han d’anar precintats i ser a prova de fuites per evitar les pèrdues de líquids durant el transport, per a això són convenients els vehicles amb cubetes estanques, que impedeixin l’eliminació de material (sang, excrements,…) durant el transport; aquests vehicles hauran de ser subjectes d’una completa neteja i desinfecció posterior.

 

Com veieu és un problema logístic important que es multiplica quan el nombre d’animals creix i encara es multiplica més quan tens diversos focus que gestionar. Descartant l’atzar, si un no és completament estricte en tots els focus del brot pot involuntàriament permetre propagacions secundàries o el que és pitjor, en trànsit. Això pot explicar, ni que sigui parcialment, que en tres mesos a França encara estiguin bregant amb la soca H5N8.

 

Però aquesta, aquesta és una altra història.

Comentaris virus-lents (187): La soca H5N8 arriba a Catalunya: serem millor que els francesos?

Tornem a agafar el tema de la grip aviària ara que no solament ha arribat a Espanya (veure entrada anterior) si no que ja la tenim a Catalunya, primer per la detecció del genoma del virus HPAI H5N8 en mostres d’una cigonya morta trobada als Aiguamolls de l’Empordà (es diu que a començaments de febrer) i ara per la propagació del virus en una granja d’ànecs d’engreix a l’aire lliure ubicada al municipi de Sant Gregori (Gironès), que obliga com marca el protocol a sacrificar tots els animals.

 

800px-ciconia_ciconia_at_the_hamburg_zoo

De: https://ecoxarxanoticies.wordpress.com/2013/09/25/les-cigonyes-sestableixen-a-lleida/

Primer de tot, si el problema s’ha estès més enllà del que veiem tenim mala peça al teler. A França ja fa tres mesos que intenten eradicar-la i no han pogut…encara. Fruit d’aquestes operacions ja van més de 3 milions d’aus sacrificades; fa molt pocs dies (dimarts) es va ordenar el sacrifici preventiu de 360.000 ànecs addicionals com a part dels esforços per prevenir la propagació del virus H5N8, a regions de Pirineus Atlàntics, al sud-oest de França, que és on es concentra bona part de la producció de foie gras del país (veure entrada 185). De fet el Ministeri a França va començar fort, després va obrir la mà al veure que semblava que la propagació del virus minvava però ara tornar a accelerar un cop ha vist que la propagació torna a agafar embranzida. Ara mateix porten 273 brots de la soca H5N8 a granges i 28 deteccions (aïllaments) a animals silvestres. D’aquest 273 brots, més de 120 cauen al departament de les Landes (que concentra una quarta part de la producció de foie gras), i altres 92 a la propera regió de Gers; alta concentració de brots limítrofs amb Espanya, doncs.

 

Aquesta lectura convé tenir-la en ment. Potser és bo ser molt “agressiu” al començament i no obrir la mà abans d’hora.

 

El que és cert és que, com HPAI, H5N8 és un virus que un cop entra en una granja es propagarà a gran velocitat, i amb períodes d’incubació curts o molt curts. És bo recordar un text clàssic que diu què cal per considerar un virus influença aviar (avian influenza, AI) com un HPAI (Highly Pathogenic Avian Influenza):

 

The usage of the term HP implies that the virus is highly virulent for chickens and has been demonstrated to meet one or more of the following three criteria (72, 115):

  1. a) any influenza virus that is lethal for six, seven or eight of eight (>75%) four- to six-week-old susceptible chickens within ten days following intravenous inoculation with 0.2 ml of a 1:10 dilution of a bacteria-free, infectious allantoic fluid

  2. b) any H5 or H7 virus that does not meet the criteria in a), but has an amino acid sequence at the HA cleavage site that is compatible with HPAI viruses

  3. c) any influenza virus that is not an H5 or H7 subtype and that kills one to five of eight inoculated chickens and grows in cell culture in the absence of trypsin.

Sic de Swayme & Suarez. 2000. Rev. sci. tech. Off. int. Epiz., 19 (2), 463-482

És a dir, un HPAI per definició és altament  mortal, un cop que entra en una granja matarà entre el 75% i el 100% dels animals de la mateixa; per tant si es detecten uns, encara que siguin pocs, animals infectats, positius amb H5N8 la conducta humanitària es eliminar-los a tots per evitar patiments. Addicionalment hi ha avantatges com serien evitar una propagació ulterior perquè els animals mors deixen de propagar el virus.

 

Hi ha problemes logístics considerables. No és fàcil matar desenes de milers d’animals si es vol fer d’una manera correcta i es volen eliminar els cadàvers per evitar una ulterior propagació. Hi ha desafiaments logístics darrera. És per això, que el Ministre francès ha dit que el darrer sacrifici massiu ordenat, de 360.000 aus els durà setmanes. Òbviament, quan més ràpidament i dràsticament es faci millor.

 

De la nota de premsa del Departament d’Agricultura, Ramaderia, Pesca i Alimentació (enllaç http://agricultura.gencat.cat/ca/inici/nota-premsa/?id=298190) es deriva que les mesures que s’han pres són les pautades a Europa, com no podia ser d’una altra manera. La determinació del origen, que apunta a les aus silvestres, i amb el que no puc estar més d’acord quedarà encarregat al personal científic tècnic del IRTA-CReSA (on hi treballo).

 

A tal efecte convé recordar una investigació epidemiològica que es va fer amb la primera onada de H5N8 al 2014 a Alemanya (sí, heu llegit bé, al 2014). L’enllaç a l’article és… https://wwwnc.cdc.gov/eid/article/21/5/14-1897_article. El 3 de novembre de 2014, es detectà un sobtat augment de mortalitat (el dia anterior, 2 de novembre havien mort poc més d’un centenar mentre el dia 3 moriren 731 i el dia 4 quasi 900 animals) en una granja de galls d’indi en una instal·lació d’engreix d’aquests animals (31.000 exemplars) al nord-est d’Alemanya. La granja afectada  estava situada en una zona amb baixa densitat d’aus de corral a poc més d’un km del Llac Galenbeck, una zona protegida, reserva natural molt freqüentada per aus silvestres. La finca era d’accés restringit i estava envoltada de camps i boscos. Els galls d’indi eren dins coberts, estables (instal·lació tancada). El dia 6 de novembre van ser tots sacrificats però ja no hi eren tots. En alguns estables la taxa de mortalitat acumulada ja estava per sobre del 90%. La mortalitat va ser relativament depenent dels coberts o estables.

 

Les investigacions epidemiològiques van poder descartar entrada del virus a partir d’ous de gall d’indi o de galls d’indi infectats; aigua, aliments o llit contaminat; o a través de persones que haguessin visitat les àrees infectades, en aquell moment, a Corea del Sud o l’Est d’Àsia. No es va poder descartar, però tampoc es va poder confirmar definitivament, la introducció per acció de les aus silvestres infectades, que podrien haver contaminat aigua, aliments, terres o fomites, ja que estaven en gran nombre al llac proper a la instal·lació, però també als camps de conreu dels voltants. S’analitzaren mostres de femtes d’aus silvestres dels terres dels voltants però totes elles donaren resultat negatiu. Es va detectar, però, mostra positiva en un xarxet sa (Anas crecca) caçat a l’illa de Ruegen, no massa lluny, el 17 de novembre de 2014, pel virus H5N8. UN clar exemple que l’absència de prova no és prova d’absència.

 

Tanmateix i com indica la premsa (veure enllaços http://cat.elpais.com/cat/2017/02/23/catalunya/1487845683_114967.amp.html o http://www.ara.cat/societat/detecta-aviaria-granja-danecs-Girones_0_1747625370.html) la granja afectada, al municipi de Sant Gregori, es trobava fora del perímetre de control determinat pel punt en el que es va trobar la cigonya morta. Per tant o la infecció està més estesa o la cigonya no es representativa com epicentre. Estem gratant la punta del iceberg? perquè no sabem quan de temps porta el virus circulant. Els virus HPAI són extremadament patogènics en aus domestiques o de producció però la seva mortalitat no és tan intensa en aus silvestres que poden excretar el virus patint la infecció, o fins i tot en infeccions asimptomàtiques. No sabem quantes aus silvestres han propagat el virus ni per quines zones ho han fet. No encara.

 

L’època no és bona pel que fa als nostres interessos. El virus de influença és un virus embolcallat que no porta bé la dessecació ni les altes temperatures. Lamentablement estem a l’hivern, amb temperatures baixes (relativament baixes) i humitat relatives altes…les condicions mes favorables per la persistència viral. Una femta recent es pot mantenir relativament fresca i hidratada com per tant mantenir els virus prou viables. Recordem que en un gram de femta podem trobar-nos milions de virus influença que poden contaminar gespa, terres i aigües de llacs o de subministraments pels animals de granja. Si voleu més informació bàsica al respecte aneu a Tenacity of avian influenza viruses a l’enllaç http://www.oie.int/doc/ged/D6189.PDF.

 

En alguns estudis (veure enllaç previ) s’indica que una espècie d’ànec concreta (Cairina moschata, l’ànec mut) pot excretar 6,4 g de material fecal per hora, amb una infectivitat d’1 × 10exp7,8 EID50 per gram (això són 50.000.000 virus), i aquestes aus excretarien potencialment 1 × 10exp10 EID50 en 24 hores….i això són 10.000.000.000 virus.  Per tant potencialment es poden contaminar moltes superfícies, gespa, terres i aigües amb això. Les aus “camperes”, aquelles en regim de llibertat, open range, i que, per tant, poden compartir espais amb les aus silvestres són les que corren el risc principal.

 

Les explotacions tancades amb bones mesures de bioseguretat no haurien de patir (sempre que les condicions de bioseguretat se segueixen estrictament) i per exemple l’aigua que es subministra no hagi tingut contacte amb aportacions exteriors (protegida de deposició de femtes i desinfectada si es capta d’un llac que rep fauna silvestre); que llit i aliments es guardin sempre protegits de l’aire lliure i les dejeccions i que els treballadors no entri inadvertidament el virus amb les seves botes, roba o ítems emmagatzemats a l’exterior.

 

Finalment una precisió a la nota respecte la nul·la afectació a humans. Efectivament totes les proves i coneixements actuals apunten a la seva incapacitat d’infectar humans (enllaç a avaluació de risc de la ECDC http://ecdc.europa.eu/en/publications/Publications/risk-assessment-avian-influenza-H5N8-europe.pdf). Bona part d’aquesta premissa es basa en la diferent afinitat que tenen els virus de la grip aviària, respecte els virus de la grip humana, per uns receptors cel·lulars específics (la seva porta d’entrada a les cèl·lules). Els virus de la grip aviària tindrien afinitat pels receptors àcid siàlic alfa-2,3, mentre que els virus de grip humana tindrien afinitat pels receptors àcid siàlic alfa-2,6. Si voleu una explicació molt planera (en anglès) podeu anar a l’enllaç http://www.virology.ws/2009/05/05/influenza-virus-attachment-to-cells-role-of-different-sialic-acids/). Els receptors àcid siàlic alfa-2,3 estan molt presents a les cèl·lules epitelials de l’intestí d’ànec. Per contra, pel que fa els receptors àcid siàlic alfa-2,6, és el principal tipus d’àcid siàlic present en les cèl·lules epitelials respiratòries humanes. Però res és absolut; receptors àcids siàlic alfa-2,3 també es troben en poblacions cel·lulars menors presents en el tracte respiratori humà…per tant que es infectem de H5N8 no és impossible encara que la dosi i la pressió infectiva hauria de ser molt alta. Això és el que ha passat amb altres virus de influença com H7N9 que està circulant actualment per Àsia i el ja vell conegut H5N1. És molt improbable que un europeu amb contacte ocasional s’infecti…jo no posaria la mà al foc, però, per un xines que visqués, o que visités amb molta freqüència, a mercats d’aus i animals vius a Àsia. La transmissió entre humans sí que sembla requerir reconeixement de receptors àcid siàlic alfa-2,6 perquè sigui eficient (i això indiquen els estudis amb el virus de la grip de les pandèmies de  1918, 1957, i 1968). I fins aquí llegirem per avui.

 

Queden molts més temes del virus influença però aprofitarem temes d’actualitat per anar-los traient.

 

Perquè aquesta, aquesta és una altra història.

 

Comentaris virus-lents (186): H5N8 ja és aquí…com ho gestionem?

A la darrera entrada, fa uns pocs dies, comentàvem que H5N8 havia arribat a l’altra banda dels Pirineus i que no trigaria en saltar cap a la Península. Fa dos dies s’informava de la detecció de la soca H5N8 a dos oques vulgars (Anser anser) trobades mortes a la llacuna de La Nava de Fuentes, a Palència (Castella i Lleó). Aquesta detecció va ser possible pel que anomenem vigilància epidemiològica passiva.

graylag_geese_anser_anser_in_flight_1700

Anser anser en ple vol. De: http://www.gbif.org/species/2498036

Vigilància epidemiològica passiva? Vigilància epidemiològica d’aus silvestres? Expliquem un pel més això.

 

Els programes de vigilància passiva en aus silvestres es basen en la detecció de qualsevol increment anormal en la mortalitat d’aus silvestres que pugui relacionar-se amb l’aparició d’influença aviària. En resum, aus silvestres mortes que no ho hagin estat per acció d’un depredador. En aquests casos es procedirà a la recollida i tramesa de les mostres de cadàvers d’aus silvestres als laboratoris de referència per a la seva anàlisi. El centre on treballo, IRTA-CReSA és el responsable de la vigilància a Catalunya, per delegació del Departament d’Agricultura, Ramaderia, Pesca i Alimentació (DARP). La recollida de les aus s’ha de fer per personal especialitzat o bé adoptant unes precaucions mínimes de seguretat (guants, pinces, mascareta filtrant si es disposa d’ella). Un punt clau de la vigilància passiva és proporcionar a la població les pautes d’actuació si troben aus mortes. Com es tracta d’aus mortes estem davant un procés agut, i fatal i les mostres que s’analitzen habitualment són hisops traqueals i cloacals (que són les habituals vies de secreció excreció viral. La detecció de genoma del virus implica positivitat, i infecció recent.

 

En contraposició als programes de vigilància passiva estan els programes de vigilància activa; en aquests casos s’estableix un mostreig en aus silvestres de manera ininterrompuda al llarg de tot l’any, per intentar comprendre millor l’epidemiologia del virus. El mostreig s’intensifica en les èpoques de cria, pas migratori i hivernada. Aquest mostreig es pot fe amb captures o mostrejant aus mortes per caçadors. El nombre d’aus, la seva distribució durant l’any i les especies implicades ha de ser curosament calculades per maximitzar la capacitat de detecció. En aquestos casos les mostres de referència son les mateixes; hisops traqueals i cloacals però també pot extraure-les sèrum (de les aus vies) per controlar exposició prèvia al virus de la grip aviària, i a quina soca en concret.

 

El focus dels dos programes estan a les variants H5 ó H7 dels virus de la grip aviària que són on es troben les variants altament patogèniques per les aus…i en algunes soques, per humans.

 

Això que acabem de comentar té la funció d’un radar, que ens informa de la possible circulació del virus a les poblacions silvestres i d’una potencial afectació a les poblacions aviars de producció. Per tant és una mesura preventiva, que es complementa amb plans de vigilància equivalents a les explotacions aviars. En aquests casos, molts més controlables i quantificables els propietaris o el personal que té cura dels animals han de notificar amb urgència en cas de detectar algun, o més d’un, dels següents signes (tots ells mesures indirectes d’un procés infecciós):

  • Caiguda del consum de pinso o aigua superior a un 20%,

  • Caiguda en la posta superior a un 5% durant dos dies consecutius,

  • Mortalitat superior al 3% durant una setmana,

  • Qualsevol signe clínic o post-mortem que suggereixi la presència de la malaltia.

 

Però els plans de vigilància no són la solució única per prevenir la grip aviària; hi ha tres tipus de mesures que cal utilitzar conjuntament.

 

En primer lloc, les mesures de bioseguretat i vigilància entre les que inclouríem:

  • posar en quarantena les granges infectades;

  • restriccions a la circulació, moviment d’aviram en les zones circumdants a la zona afectada, ja estigui confirmada o encara amb status de sospitosa;

  • estrictes mesures d’higiene com l’ús de roba de protecció i desinfecció dels vehicles que passen per zones infectades per prevenir la propagació del virus a través de fomites o equips contaminats;

  • la vigilància de les aus silvestres i de corral a les àrees circumdants a la zona afectada, ja confirmada o encara sols sospitosa.

 

En segon lloc, si es detecta un brot, sacrifici de les aus infectades. Actualment no hi ha una cura per la grip aviària altament patògena i s’adopta una versió plumífera de “mort el gos, mort la ràbia”. En aquesta situació, per prevenir la propagació del virus, entrarien les següents accions;

  • Totes les aus en un lloc determinat (per exemple, una granja) on hi ha casos positius han de ser eliminats…encara que no s’hagin assajat.

  • Els cadàvers de les aus sacrificades han de ser degudament eliminats, la qual cosa es fa generalment mitjançant el seu enterrament o la incineració.

  • Les aus d’explotacions a les rodalies de la zona especifica afectada poden ser també reglamentàriament sacrificats. El radi afectat pot ser de uns quants kilòmetres.

 

En tercer lloc, per evitar una major propagació de la infecció, es pot implementar un programa de vacunació si la vacuna està quantitativament disponible tenint en compte el següent:

  • La vacunació és una estratègia de prevenció,

  • La vacunació no sempre prevé de la infecció, però l’au vacunada no mostrarà simptomatologia evident ni es morirà com si faran les aus infectades no vacunades.

  • Si una au vacunada s’infecta, o bé no excretarà virus o ho farà a nivells, quantitats molt més baixes que una au infectada no vacunada i això ajuda a aturar la circulació del virus.

 

La presència de virus de la grip aviaria d’alta patogenicitat (Highly pathogenic Avian Influenza, HPAI en anglès) a Espanya no és molt freqüent. Això no vol dir que no circuli si no que s’ha aïllat poc.

 

A silvestres, l’únic cas de HPAI H5N1 va ser al juliol de 2006, aïllat d’un exemplar silvestre trobat mort, un cabussó emplomallat (Podiceps cristatus).

 

Pel que fa a aus de producció es donà un focus de HPAI H7N7 en una explotació de gallines de posta a Guadalajara (Castella-La Mancha), a finals del 2009. Al 2013 es va detectar un focus d’influença aviària H7 (que té soques altament patogèniques per aus). En aquest cas, però fou un virus aviar de baixa patogenicitat (H7N1) en una explotació de gallines reproductores a Lleida. En tots dos focus, després de la confirmació, es va delimitar una zona de protecció i una zona de vigilància per prevenir la difusió de la malaltia, així com el sacrifici de totes les aus presents a la explotació (més de 300.000 gallines a Guadalajara; 13.000 a Segrià), la destrucció de tots els materials presents a l’explotació que poguessin vehicular el virus (per exemple tots els ous i el pinso) i la seva posterior neteja i desinfecció. No es van detectar focus secundaris en cap dels dos casos.

 

Tanmateix, totes les deteccions de grip aviària són importants, tant les soques HPAI com LPAI…a tall d’exemples, durant 1983 i 1984 es va produir un brot epizoòtic als Estats Units originat pel subtipus H5N2 que va començar amb baixes taxes de mortalitat, per anar evolucionant i al cap de sis mesos arribar a taxes de mortalitat en aus del 90%. Al final calgué sacrificar més de 17 milions d’aus. O un brot de grip aviaria LPAI H5N2 que començà a Mèxic el 1992 i que va acabar essent altament mortal i no pogué ser controlat fins el 1995.

 

I és que costa molt controlar les aus, sobre tot les silvestres, i més encara netejar i sanejar una explotació perquè els virus influença poden subsistir, mantenir-se potencialment infecciosos sobre superfícies, eines i materials, les fomites. No massa temps, però poden.

 

Però aquesta, aquesta és una altra història.

Comentaris virus-lents (139): CReSA dins del mapa ICTS? I que és una ICTS?

La ciència es pot fer amb pocs mitjans, però bons plantejaments, millors preguntes i un molt de cervell. Tanmateix molta de la ciència actual necessita grans mitjans…i molt de cervell per aprofitar-los.

 

A Espanya, a Catalunya, tenim també grans mitjans si bé mancats de la priorització que els caldria per part d’uns governs centrals que mai han entès que la ciència i la recerca (no militar) és un benefici per a la societat, a present i a futur. En les darreres dècades, a Espanya i a Catalunya, s’han construït i han començat a operar una sèrie d’infraestructures  i equipament científic-tècnic, amb la finalitat de ser líders als seus camps, captar talent i atreure activitats empresarials de R+D+i.

 

Per racionalitzar i permetre sinèrgies i col·laboracions entre aquestes infraestructures s’ha construït un mapa de Infraestructuras Científicas y Técnicas Singulares (ICTS). La presència d’una infraestructura en aquest llistat vol dir estar davant d’una infraestructura de titularitat pública; haver passat una avaluació independent per experts internacionals; ser única al seu gènere, amb costos d’inversió, manteniment i operació molt alts (un mínim de 10 milions d’euros d’inversió acumulada en actius tecnològics) i estar oberta a l’accés d’investigadors d’institucions públiques o privades. Per tant no estar-hi no vol dir no fer bona ciència si no absència de compliments dels paràmetres anteriors. La idea d’aquest mapa és fer-ho visible a la societat, a altres centres de recerca i a les empreses, per potenciar les seves capacitats mitjançant una millor coordinació entre elles, evitar la seva obsolescència, evitar redundàncies (si n’hi ha una ICTS ja activa no es farà una altra equivalent sense aprofitar abans al màxim la ja existent) i aconseguir la implicació del sector industrial. El mapa actual (2013-2016) es va aprovar a finals del 2014 i substitueix el primer mapa, creat el gener del 2007, i és un mapa obert, que pot incorporar noves infraestructures si compleixen els criteris però també pot fer fora aquelles que no els compleixin.

 

Les ICTS cal que comptin amb una Pla Estratègic quadriennal que sigui sotmès a revisió periòdica, establint periòdicament objectius, estratègies i recursos. També ha de tenir constituït un Comitè Científic Assessor amb experts internacionals i comptar amb esquemes i personal de gestió professionals.

 

Aquestes ICTS  han de tenir mecanismes d’accés públics i transparents de manera que tot personal investigador pugui presentar propostes d’activitats que un cop avaluades, si demostren prou qualitat científica i/o tecnològica seran prioritzades a la seva realització.

 

Les ICTS (un total de 59 centres agrupats en 29 ICTS) es reparteixen en 8 àmbits: astronomia i astrofísica; ciències del mar, de la vida i de la terra; ciències de la salut i biotecnologia; tecnologia de la informació i les comunicacions; energia; enginyeria; materials; i ciències socio-econòmiques i humanitats. Aquelles ICTS amb una única localització, un únic edifici, s’anomenen Infraestructuras con localización única; altres poden formar part d’una Red de Infraestructuras (RI) o constituir-se com una Infraestructura Distribuida (ID), depenen del nivell d’integració i coordinació de les seves capacitats.

 

A Catalunya n’hi ha 10 d’aquestes ICTS, que serien també les ICTS en una Catalunya independent si apliquéssim els mateixos criteris, amb algunes incorporacions de centres de l’esfera CERCA (una de les exitoses eines catalanes sense contrapart a Espanya). Estem parlant, entre altres, del CNAG (Centre Nacional d’Anàlisi Genòmica), del Barcelona Supercomputing Center (BSC), del Sincrotró ALBA…i del Centre de Recerca en Sanitat Animal (CReSA).

 

CReSA entra al Mapa de les ICTS per constituir, juntament amb el CISA (Centro de Investigación en Sanidad Animal) una xarxa de dos nodes, la xarxa de Laboratoris d’Alta Seguretat Biològica (red de Laboratorios de Alta Seguridad Biológica, RLASB). Som dues institucions que ens dediquem a la recerca en patògens animals però també zoonòtics, per tant afectant a humans, alguns d’elles extremadament perillosos (influenza aviaria, virus de febres hemorràgiques, West Nile Fever Virus, Chikungunya, MERS Coronavirus, prions, etc.).  Els dos centres formen també part de la Red de Laboratorios de Alerta Biológica (RELAB), per més detalls veure entrada 125 https://comentarisviruslents.org/2015/07/19/comentaris-virus-lents-125-irta-cresa-dins-la-relab-umm-que-es-la-relab/.

 

Com a xarxa CReSA i CISA hauran de bastir un pla estratègic conjunt encara que mantindran autonomia en les seves activitats. Aquesta xarxa hauria de permetre un millor accés a les capacitats de maneig experimental amb patògens perillosos per promoure la recerca en vacunes, teràpies post-infecció i un millor coneixement de les malalties que aniran trucant a la nostra porta els propers anys.

 

Que això sigui així depèn de tots nosaltres però principalment dels organismes rectors i finançadors de la ciència a Espanya…i a Catalunya.

 

Però aquesta, aquesta és una altra historia.

 

Per saber més d’aquesta però també altres ICTS pitjar enllaç   http://www.idi.mineco.gob.es/stfls/MICINN/Innovacion/FICHEROS/ICTS_esp.pdf

Comentaris virus-lents (83): H5N8, i la ruleta continua donant voltes…

Una nova variant d’influenza aviaria altament patògena (en endavant HPAI de Highly Pathogenic avian influenza), anomenada H5N8 ha aterrat als països occidentals (ara per ara s’ha descrit a EEUU i Alemanya). Estem parlant de soques altament patògenes per l’aviram, no està gens clara la seva patogenicitat a humans. Aquest H5N8 ve a afegir-se a variants prèvies que sí han despertat una forta alarma social, com HPAI H5N1 o H7N9.

H5? N8? No és el joc de “enfonseu la flota”!! Aquests virus d’influenza (tots, també els que ens afecten a nosaltres) tenen un genoma, un àcid nucleic, segmentat; dos d’aquests segments porten la informació per codificar dues proteïnes, la hemaglutinina (H) o la neuraminidasa (N), respectivament. Aquestes són les proteïnes més “rellevants”, en el sentit de ser les més externes del virus. Hi ha descrites 16 variants de hemaglutinines (de H1 a H16) i 9 de neuraminidases (N1 a N9). En principi totes les combinacions entre “H” i “N” son possibles. Cada combinació és un subtip, com un clan familiar, i dins cada subtipus hi ha diferents soques (famílies properes). Per tant H5N8 és un subtip dels més de 100 subtipus possibles, i de fet ja es va descriure per primer cop a Irlanda el 1983, i al 2010 a Xina. Aquest subtipus es generen quan hi ha co-infeccions entre dos sub-tipus parentals. A l’hora d’empaquetar, a una cèl·lula infectada, el material genètic per donar noves partícules víriques, pot passar que es barregin segments i es donin noves combinacions. Així una co-infecció entre H5N1 i H3N9 podria donar-nos H5N1, H3N9 però també H5N9 i H3N1.

Aquest H5N8 té el seu origen a Àsia, com no!, com el H5N6 que n’és contemporani, i ha estès el seu radi d’acció durant l’any 2014 a través de les rutes migratòries de les aus silvestres. En una de les rutes, la del Pacífic, aquest H5N8 original s’ha barrejat amb soques americanes del virus que han retingut la fracció H5 del virus HPAI, i per tant han mantingut la seva alta patogenicitat. En alguns casos han mantingut N8, en altres han substituït aquest per un N2 o un N1, que també estan circulant, com H5N2 o H5N1.

Al cas americà de H5N8, la detecció es feu al comprovar un increment inesperat de la mortalitat a la bandada de gall d’indis a una granja al comtat de Stanislaus a Califòrnia. Com a resultat, la granja he entrat en quarantena després de fer un buidat (sacrifici) de tots els galls d’indi de l’explotació, que evidentment no han entrat a la cadena alimentària.

El cas alemany es va comunicar el proppassat novembre, també en una granja de gall d’indi i conté la fracció H5 altament patogènica. L’estudi genètic ha demostrat que és molt proper, no té pràcticament cap diferència, amb els virus H5N8 detectats a Xina, República de Korea o Japó durant la segona meitat del 2014.

Fins i tot si haguessin entrat a la cadena alimentària, el cuinat de la carn de gall d’indi o del ous a temperatures “reals” (per reals és vol dir a tots els punts del aliment) de 75ºC o superiors, serien suficients per inactivar, per matar, el virus. Per tant, tot bullit o ben fregit aliment dona una garantia total.

No se sap com va arribar el virus a les granges, encara que el més probable és que fora a través d’aus silvestres, que poden portar el virus centenars o milers de kilòmetres (a les seves migracions) sense emmalaltir. De fet ja hi ha proves experimentals que demostren que la variant asiàtica original no causa mortalitat elevada a ànecs, ni silvestres ni en captivitat, però que poden excretar-lo en grans quantitats a les femtes. Aquí, un incís. L’inici de la circulació del HPAI H5N1 es va detectar per una anormal mortalitat d’aus silvestres a Xina, per tant, com en tot, sempre hi ha excepcions. En conseqüència és una regla de precaució no apropar-se a cap au silvestre o de granja, morta o malalta sense fer servir guants i rentant-se les mans intensament en acabar.

Una oreneta no fa estiu. Per tant un au morta al camp no implica un brot epidèmic de grip aviaria, però un increment general de la mortalitat a les aus silvestres sí seria un indici. De la mateixa manera un increment en la mortalitat, o reduccions en la ingesta d’aliments, o en la producció d’ous, a ànecs i pollastres o gallines son una símptoma que cal investigar. La bioseguretat, un concepte que he discutit en altres entrades del blog, però en aquest cas referida i aplicada a les granges i que consisteix en evitar tot el que sigui possible el contacte de les aus silvestres amb les nostres aus de producció, aquí juga un paper clau.

Però aquesta, aquesta és una altra història.