comentarisviruslents

Aquest blog és una seguit de comentaris personals i probablement poc transferibles sobre ciència i política.

Archivos en la Categoría: desinfecció

Comentaris virus-lents (213): Virus de la pesta porquina africana… com ens el traiem de sobre? Inactivació (1).

 

El virus de la pesta porquina africana (en endavant VPPA) s’ha detectat a Bèlgica fa unes poques setmanes en porcs senglars. Per més detalls podeu llegir l’entrada https://comentarisviruslents.org/2018/09/23/comentaris-virus-lents-211-porca-miseria-avanca-des-de-lest/ en aquest mateix blog. No hi ha noticia d’afectació a granges però en cas que hi hagués, com a mínim els animals de la granja afectada serien sacrificats…però què fem amb el VPPA excretat i secretat pels animals?. Què fem amb totes les superfícies, sales, estris, materials potencialment o realment contaminats amb VPPA? I ja no parlem dels vehicles de transport. Recordem que és un virus que s’excreta en quantitats importants (milions de virus per ml a les secrecions, desenes de milers per ml d’orina) i que persisteix raonablement al medi ambient.

 

porc senglar viquipedia

imatge de porc senglar (de Viquipèdia)

 

Si mirem la OIE trobaríem a l’enllaç Resistance to physical and chemical action dins la fitxa corresponent al African Swine Fever (veure http://www.oie.int/fileadmin/Home/esp/Our_scientific_expertise/docs/pdf/AFRICAN%20SWINE%20FEVER.pdf, tradueixo de l’anglès).

 

Molt resistent a baixes temperatures. Inactivat tèrmicament 56ºC per 70 minuts o a 60ºC per 20 minuts.

Òbviament això no és dir gairebé res perquè no se’ns diu res de dos factors fonamentals, la matriu en la que es troben els virus i el títol inicial dels mateixos, dos paràmetres cabdals en qualsevol estudi d’inactivació vírica; un exemple; ens poden dir que una etapa d’un procés (per exemple, l’assecat de llonganisses) ens garanteix una inactivació de 4 log10, és a dir que mata 10.000 virus al final de l’etapa. Si apliquem el procés a una mostra que conté 9.000 virus la mostra no tindrà infectivitat residual, no serà infectiva. Però si apliquem el mateix procés a una mostra que té 50.000 virus la mostra no quedarà del tot inactivada, podrà ser font secundaria d’una infecció. En ambdós casos, però, el procés ens ha eliminat 4log10. Per tant, aquesta dada és parcial.

 

Inactivat per pH inferior a 3,9 o superiors a 11,5 en medis lliures de sèrum. El sèrum incrementa la resistència del virus; per exemple, a pH 13,4 la persistència del virus arriba a les 21 hores en absència de sèrum i fins a 7 dies en presència de sèrum.

El sèrum és un conegut matèria interferent com ho és la matèria orgànica, les proteïnes. Altre cop el full de dades bàsiques de la OIE ens furta indicar els valors inicials i finals del títols vírics i quin valor numèric (en log10R) li assignen a la paraula “inactivació”. Tampoc quin tipus de materials interferents s’han fet servir, la temperatura del procés, si els assajos són en suspensió o bé sobre superfícies o fomites, etc.

 

(VPPA) és susceptible a èter i cloroform. Inactivat per 8/1000 hidròxid sòdic (30 minuts), hipoclorits – 2,3% clor (30 minuts), 3/1000 formalina (30 minuts), 3% orto-fenilfenol (30 minuts) i compostos iodats.

Aquí altre cop les mateixes queixes…incrementades. Es parla de dilucions però no sabem si aquestes dilucions es va aplicar a mètodes en suspensió o carrier (superfícies); no es parla de la temperatura, un paràmetre cabdal en la cinètica del desinfectants; pel que fa als hipoclorits no es fa esment a quines concentracions de matèria orgànica és efectiu, o si aquestes esmentades són efectives en presencia de mat. orgànica per exemple, femta; recordem que el lleixiu (hipoclorit sòdic) es veu afectat per la matèria orgànica. Altre cop no es parla que vol dir inactivat (3log10R? 4 log10R? 5 log10R?). Finalment, llevat del lleixiu i l’hidròxid sòdic la resta són poc o gens aplicables de forma massiva sobre superfícies, estructures o eines d’una granja afectada.

 

(VPPA) resta viable per períodes perllongats a sang, femtes i teixits, i a subproductes porquins no cuits o parcialment cuinats. Pot multiplicar en vectors (Ornithodoros spp.).

No aplica pròpiament perquè estem parlant més persistència que no inactivació però és una dada important perquè de vegades no fer res pot ser una opció. Els virus són estructures inermes, afectades pel medi ambient; la dessecació, les temperatures per sobre de 37ºC, la insolació amb el component de llum UV i altres factors que van inactivant virus sense cap intervenció humana…si sabéssim quan és suficient no caldria fer servir desinfectants, només caldria deixar la granja afectada en repòs, i completament lliure d’intromissions. Lamentablement és un procés que MAI parametritzarem bé i per tant, no és robust ni confiable.

 

Bé, aquesta entrada era nomes per situar el camp de joc…properament tornarem al tema de la desinfecció i inactivació, perquè pot ser crucial en cas d’entrada de VPPA a les nostres contrades. Cosa que no ha passat encara, però.

 

Disinfectant sprays

Amb això, obviament, no arribarem gaire lluny

 

Però aquesta, aquesta és una altra història.

Anuncios

Comentaris virus-lents (202): I en això arriba l’aigua crua. Crua estupidesa.

La darrera moda nutricional, que no la final, bé, potser sí per alguns, que s’ha desfermat als Estats Units i que perilla que arribi a Catalunya (sempre hi ha, a tota població, un percentatge de snobs) és el consum de “aigua crua”. És un retorn a la natura més pretèrita i “silvestre” i el seu lloc d’origen, un sarcasme més, ha estat Silicon Valley, el bressol de la tecnologia que consumim.

 

No és país per pobres, però. Cada gerra de 2,5 litres d’aigua crua es pot vendre en aquell lloc al preu gens barat d’uns 30 euros al canvi.

 

I que és l’aigua crua? Coneixem l’aigua de riu, l’aigua continental, l’aigua potable, l’aigua de mar però “aigua crua”? Doncs “aigua crua” és aigua sense processar (habitualment filtrar) ni esterilitzar (habitualment desinfectar). I aquí està el quid, en el retorn a allò no manipulat, a la natura, ha fet forat el fet que es comercialitzi com un aigua “externa a la xarxa municipal o estatal”, que no conté additius ni desinfectants, ni es sotmesa a cap filtració més enllà de la natural, la qual cosa faria aquesta aigua rica en minerals. Eslògans com “Naturally probiotic. Perfected by nature” en alguna d’aquestes aigües van en aquesta direcció.

 

Que qualsevol persona, benintencionada o no, que disposi d’un accés a aigua subterrània pugui obtenir grans quantitats d’aquesta aigua sense sotmetre-la a cap mena de control sanitari i obtenir grans beneficis no sembla generar gaire preocupació pels clients.

 

Existeixen determinades fonts, brolladors, aiguaneix i surgències que poden no necessitar cap mena de filtració, o tractament, i poden embotellar-se directament, però sempre hi ha controls microbiològics. Altres fonts i brolladors poden contenir una gran diversitat de bacteris, i virus (podeu consultar diverses entrades de norovirus en aquest blog), en concentracions variables durant l’any, que poden provocar diarrees benignes o severes i en determinats casos i per segons quin col•lectius mortals.

 

font cano-1081081_1920

 

Però és que a més, aquesta “aigua crua”, com aigua no tractada i per tant aigua no analitzada pot contenir vessaments de tractaments agrícoles (pesticides) però també elements químics naturals com arsènic, radó, urani, a concentracions per sobre dels límits legals.

 

L’existència d’un sistema de tractament centralitzat (si està en mans públiques o privades és tota una altra discussió) de l’aigua potable, o de beguda, i la seva posterior distribució a cases particulars és un actiu imprescindible, que com a país, donem per assumit però com a planeta està molt lluny d’haver-se assolit. Hi ha centenars, milers de milions de persones al mon que no tenen aquest “luxe”. De fet la segregació de les aigües residuals d’aquelles destinades a consum i el posterior tractament d’aquestes darreres estan al darrera de la desaparició del còlera a Europa i Nord Amèrica però també del gran increment en l’esperança de vida humana que ha donat un salt de més de 30 anys des de 1900 fins 1970, per exemple.

 

El 2015, les malalties diarreiques causaren més de 1,3 milions de morts al planeta i fou la quarta causa de mort entre infants per sota de 5 anys d’edat. Rotavirus fou l’agent causal més habitual (per sobre dels 200.000 morts) seguit per Shigella spp i Salmonella spp. Per sota dels 5 anys, Cryptosporidium spp també tingué un paper rellevant. Per més detalls consultar: http://www.thelancet.com/journals/laninf/article/PIIS1473-3099(17)30276-1/fulltext. Aquests patògens poden estar presents en aigües naturals no tractades.

 

Fins i tot, l’aigua potable, l’aigua de distribució o aigua processada vilipendiada per aquest col•lectius snobs pateix episodis de contaminació. Així segons la Organització Mundial de la Salut (OMS), l’aigua potable contaminada causa 502.000 morts por diarrea a l’any, encara que es un producte que teòricament ha passat per tractaments de filtrat i desinfecció (habitualment clor o ozó)…però que moltes vegades es torna a contaminar per deficiències en el procés de distribució. Si voleu més detalls i dades aneu a http://www.who.int/mediacentre/factsheets/fs391/es/. Per tant el mal que pot fer un aigua crua que no es trobarà més a la vora d’un desinfectant que la distància entre el lineal de les aigües al lineal de productes de neteja d’un supermercat, pot ser molt gran.

 

De fet les aigües naturals poden portar paràsits com Giardia spp i Cryptosporidium spp, que arriben a través de les femtes d’animals bovins, i que són molt residents a les condicions ambientals i als tractaments desinfectants. Aquest és un dels motius pels que no convé beure aigua de rierols o corrents de prats o zones amb abundants ramats o poblacions de cérvols, isards, cabirols, si és que no ha estat ben desinfectada o bullida abans de ser consumida.

 

manantial

 

Aquests genis del màrqueting que proposen un retorn al “producte natural” com és l’aigua crua poden argüir (fins i tot sense proves) que la seva serà un aigua rica en minerals (?) però nosaltres podem afegir que també rica, ben carregada, d’elements tòxics, matèria orgànica sense caracteritzar, bactèries i paràsits. Aparteu de mi aquest calze, si us plau.

 

Però aquesta, aquesta és una altra història.

Comentaris virus-lents (188): I ara como inactivem H5N8 un cop ens ha entrat…

Estem en plena onada de la soca H5N8 del virus de la grip aviaria a Europa…veurem com es van desenvolupant els esdeveniments de la seva progressió però el motiu d’aquesta entrada no és aquest, és parlar de com inactivar el virus, de com descontaminar o desinfectar un àrea, element o estri contaminat.

cabezal_influenza_cataluna

de: https://avicultura.info/influenza-aviar-control-cataluna/

El primer fet a constatar és que la inactivació és un procés físic o químic (també pot ser biològic però no embolicarem la troca) que no és massa depenent de soca. La inactivació actua sobre el embolcall, la càpside o l’àcid nucleic; per a tots els virus de influença A que ens ocupen les diferències es troben a nivell de seqüència, ja sigui de nucleòtids o aminoàcids però no tenen un trasllat evident a una major o menor estabilitat del embolcall o de la càpside (o no ha estat descrit fins ara). Un H5N8 és “igual” que un H5N1, un H7N1 o un H7N9 quan s’enfronta a una solució alcohòlica, una dilució de lleixiu o l’acció de la llum ultraviolada. Sí que s’ha trobat algunes diferencies entre soques en condicions ambientals, en principi, menys agressives. Fent una imatge gràfica, tots els virus influença A responen igual quan els disparem un obús però no quan els disparem amb una fona de forma continuada.

Sí té molta importància, però, el medi circumdant. Per fer una bona desinfecció ens cal abans haver retirat la major part de la matèria orgànica interferent (això pot semblar fàcil, relativament, en estris, aparells, maquines i roba però no ho és gens en naus o instal·lacions que han contingut animals). Aquesta retirada o reducció és fonamental. Si no es fa així pot passar que el consum de desinfectant sigui superior, o molt superior al teòric ja que cal comptar que una part del mateix no es dedicarà a inactivar el virus si no que quedarà segrestat i inutilitzat per la matèria orgànica.

I contra el pensament generalitzat el virus de la influença aviar H5N8, com les altres soques HPAI (Highly Pathogenic Avian Influenza), s’excreta majoritàriament a través de les femtes; certament també ho fa en menors quantitats per tràquea i vies respiratòries però la via principal és la fecal. I parlem de paraules majors, del ordre de 10.000.000 virus infecciosos per gram de femtes en animal infectat. Les femtes, quan s’assequen, poden ser resuspeses pel vent, per accions mecàniques com escombrats o trepitjades fortes i llavors passen a l’aire si bé de forma inestable (acaben tornant al terra o sobre objectes i superficies). A més un cop infectat l’au pot estar excretant el virus per dies…fins a la seva mort, que en el cas d’aus infectades per HPAI és pocs dies després.

 

SANT GREGORI GIRONES SOCIETAT  GRANJA ANECS 23 02 17 FOTO ICONNAde: http://www.elperiodico.com/es/noticias/medio-ambiente/agricultura-ordena-sacrificio-granjas-patos-gripe-aviar-5859245

Llegim ara aquest petit extracte…

Tras la eliminación de los cadáveres, todas las naves o recintos en los que se hayan alojado las aves de corral u otras aves cautivas, los pastos o terrenos, los vehículos utilizados para su transporte o el de sus cadáveres, carne, piensos, estiércol, purines, yacija y cualquier otro material o sustancia que pueda estar contaminado, serán sometidos a un procedimiento de limpieza y desinfección…. Se certificará la misma mediante acta oficial.

A: MANUAL PRÁCTICO DE OPERACIONES EN LA LUCHA CONTRA LA INFLUENZA AVIAR en: http://rasve.magrama.es/Recursos/Ficheros/Manuales/MARM/78_Manual%20IA%20Actualiz%20septiembre%202014.pdf

 

En el buidat d’una granja es donen una sèrie d’accions successives i complementàries. S’han d’eliminar els animals de la forma més humanitària possible; s’han de processar els seus cadàvers perquè no puguin transmetre la infecció; i s’ha de desinfectar la instal·lació per poder tornar a entrar animals que no s’infectin altre cop amb virus encara existents a la mateixa…si tornen a entrat “de novo” pot ser un problema de maneig o de manca de bioseguretat atribuïble al granger (en el cas d’instal·lacions tancades; quan són obertes, el medi ambient mana). Desenvolupem una mica cada acció.

 

La neteja i la desinfecció de les explotacions infectades s’ha de dur a terme seguint un protocol bastant estricte.

Cal una neteja i desinfecció prèvies: En el moment de matar les aus caldrà fer-ho de forma que s’eviti o redueixi al mínim la dispersió dels virus; per això és convenient portar els equips temporals de gasificació i desinfecció al costat de la nau, el subministrament de vestimenta protectora, dutxes, i sistemes de descontaminació de l’equip, instruments i elements utilitzats, així com anular, o no alimentar, el sistema de ventilació.

Tot l’equip portàtil es desmantellarà per a la seva neteja i desinfecció separada. Es desinfectarà tot el material que s’hagi utilitzat en el sacrifici (roba, botes, estris, vehicles, bolquets, pales, etc.). Els materials d’un sol ús seran retirats de forma segura (recipients tancats i hermètics) per la seva posterior eliminació (idealment incineració). Les instal·lacions elèctriques i equips electrònics s’han de protegir per al seu posterior tractament específic, que normalment implica una fumigació amb formaldehid.

Les parts de l’explotació en què s’haguessin allotjat els animals sacrificats, així com parts d’altres contaminades durant el sacrifici o la necròpsia, es fregaran i netejaran de tota matèria orgànica emprant un producte de neteja de les superfícies, començant pel sostre o teulada, a continuació les parets, de dalt a baix i finalitzant per terra. Després de la neteja es ruixen les superfícies amb desinfectants autoritzats (veure un llistat bàsic més a baix). Les operacions de neteja (aigua i detergent), a fons, han de ser prèvies a les operacions de desinfecció per eliminar gran part de la matèria orgànica que impedeix l’adequada actuació de molts dels desinfectants. El desinfectant aplicant romandrà sobre la superfície tractada durant almenys 24 hores (és a dir, no esbandirà, es deixarà assecar).

Després es farà una neteja i desinfecció finals, que implica un nou desengreixat de les superfícies per treure brutícia residual i aclarit amb aigua freda tornant a ruixar de nou les superfícies amb desinfectant. Transcorreguts set dies es tornaran a repetir totes les operacions de neteja i desinfecció.

 

Com eliminar el llit i les femtes dels animals? El llit i els fems de l’explotació, un cop eliminats els animals, s’hauran de tractar mitjançant un mètode idoni per eliminar el virus. Els mètodes contemplats per la legislació europea són: tractar-los amb vapor fins assolir 70ºC; destrucció per incineració o enterrament a una fondària tal que impedeixi l’accés d’aus silvestres i altres animals,;o ser sotmesos a un compostatge/compactació que generi calor interna, ruixats amb desinfectants i deixats almenys per 6 setmanes abans de qualsevol altra manipulació. Umm, 70ºC, incineració, calor interna? L’explicació és obvia; està més que demostrat que independentment de la soca aquests virus són molt poc estables tèrmicament i temperatures de 56-60-65ºC determinen inactivacions de 4-5 o més log (això vol dir inactivar 10.000-100.000 virus) en períodes curts de temps 30 min., mentre que temperatures de 70-80ºC o superiors poden assolir la inactivació total en terminis molt més curts, 1-5 min.

Qualsevol moviment de llit o femtes d’animals, al lloc on seran eliminats o bé a un lloc d’emmagatzematge transitori abans de la seva destrucció o tractament, es realitzarà en vehicles o recipients tancats i estancs, sota supervisió oficial, per evitar propagació ulterior del virus.

Si es determina que no és possible netejar i desinfectar alguna de les explotacions o part de les mateixes, es podrà prohibir l’entrada de persones, vehicles, aus de corral, aus captives, mamífers d’espècies domèstiques o objectes a aquestes explotacions o part de les mateixes per un mínim de 12 mesos.

 

L’elecció dels desinfectants i dels procediments de desinfecció es farà en funció de la naturalesa de les explotacions, vehicles i objectes que es s’hagin de tractar.

Els desinfectants que s’hagin d’utilitzar i les seves concentracions hauran estat prèviament autoritzats i s’utilitzaran seguint, o bé les recomanacions del fabricant quan es disposi d’elles o bé les instruccions del veterinari oficial.

Els desinfectants, productes químics, i / o procediments que pot ser necessari emprar són els següents:

Objecte a desinfectar Desinfectant / producte químic / procediments
Aus vives Eutanàsia (diòxid de carbono;dislocació del coll)
Canals Enterrar o cremar
Galliners/equips Sabons i detergents; agents oxidants i àlcalis
Humans Sabons i detergents
Equips elèctrics Fumigació amb formaldehid
Aigua Drenar al camp quan sigui possible
Pinso Enterrar
Efluent, fems Enterrar o cremar; àcids, àlcalis
Vivendes Sabons i detergents, agents oxidants
Maquinària, vehicles Sabons i detergents, àlcalis
Roba Sabons i detergents, agents oxidants i àlcalis

 

I el llistat de detergents i desinfectants genèrics d’elecció seria el següent:

Sabons i detergents: temps de contacte 10 minuts.

Agents oxidants:

  • hipoclorit sòdic: líquid, diluir fins a 2-3% de clor disponible, no és adequat per a materials orgànics, degut a l’emissió de cloramines i gasos amoniacals. Temps de contacte 10-30 minuts.

  • hipoclorit càlcic: sòlid o en pols, diluir fins a 2-3% de clor disponible (20 g/litre si és pols, 30 g/litre si és sòlid), no adequat per a materials orgànics. Temps de contacte 10-30 minuts.

  • Virkon®: 2% (20 g/litre). Temps de contacte 10 minuts.

Àlcalis: (no utilitzar amb alumini o altres aliatges similars)

  • hidròxid sòdic (NaOH): 2% (20 g / litre). Temps de contacte 10 minuts.

  • carbonat de sodi (Na2CO3. 10 H2O): 4% (40 g/litre si és en pols, 100 g/litre si està cristal·litzat), recomanat per a ús en presència de materials orgànics. Temps de contacte 10-30 minuts.

 Àcids:

  • àcid clorhídric (HCl): 2% (20 ml/litre), Corrosiu, utilitzar només si no es disposa d’altres productes químics.

  • àcid cítric: 0.2% (2 g/litre), segur per descontaminar la roba i el cos. Temps de contacte 30 minuts.

Gas formaldehid: tòxic, només si no fos possible utilitzar altres productes. Temps d’exposició 15-24 hores.

Una llista més extensa i detallada la trobareu a:

http://www.fao.org/avianflu/en/disinfection.html

 

En resum, es cerca portar l’embolcall i/o la càpside del virus a la seva degradació. Els detergents i tensioactius actuen sobre la bicapa lipídica del embolcall desorganitzant-la i trencant-la. Els pH extrem d’àcids i àlcalis són útils ja que els virus influença són molt sensibles a pH força àcids (per sota de 3) o força bàsics (per sobre de 12). Qualsevol agent oxidant com el Virkon o el lleixiu actua sobre els radicals lliures del proteïnes de càpside i embolcall degradant-les. Si la concentració de lleixiu és prou alta fins i tot pot trencar els àcids nucleics per punts inespecífics.

 

Eliminació de cadàvers:

Els mètodes autoritzats de destrucció dels cadàvers són: l’enterrament, la incineració i l’enviament a plantes de transformació de cadàvers i subproductes carnis. L’elecció del mètode de destrucció dependrà de diferents factors, com: la localització de les naus infectades, el nombre d’animals de l’explotació, el tipus d’explotació, la disponibilitat i característiques del terreny per efectuar la incineració o l’enterrament i la proximitat a l’explotació d’una planta de transformació.

En qualsevol cas els cadàvers de les aus sacrificades s’han de ruixar amb desinfectant i ser retirats de l’explotació en vehicles o recipients tancats i estancs. Els teixits o la sang que s’hagin vessat durant sacrificis o necròpsies s’ha de recollir amb cura i eliminar juntament amb les aus sacrificades.

Si el mètode escollit és l’enterrament:

  • Els cadàvers a la fossa han de ser ruixats amb calç viva entre capa i capa que serà distribuïda uniformement.

  • Per tancar la fossa es cobrirà, com a mínim, amb 1,5 metres de terra.

  • Abans de cobrir la fossa totalment es llançarà tot el material d’un sol ús, vestidors, calçat, utilitzat pel personal durant les operacions.

  • L’àrea al voltant de la fossa serà ruixada amb un desinfectant adequat.

  • L’entrada a aquesta fossa serà tancada i es prohibirà l’accés. Vigilar l’entrada de gossos, gats, ocells, etc. als voltants de la fossa.

  • Tot el material i equips emprats en aquestes operacions han de ser apropiadament desinfectats.

Si la fossa d’enterrament està situada fora de l’explotació, caldrà que estigui el més allunyada possible de camins públics, habitatges i altres explotacions però alhora que sigui de fàcil accés pels camions i maquines excavadores.

Si el mètode d’elecció és la incineració, caldrà emprar una gran quantitat de material inflamable per a la incineració dels cadàvers i caldrà una supervisió i custodia constant del material a incinerar. Això porta el problema logístic de com fer arribar els cadàvers a la instal·lació incineradora; com bé sabeu no n’hi ha gaires incineradores.

En qualsevol cas, els vehicles utilitzats per al transport, han d’anar precintats i ser a prova de fuites per evitar les pèrdues de líquids durant el transport, per a això són convenients els vehicles amb cubetes estanques, que impedeixin l’eliminació de material (sang, excrements,…) durant el transport; aquests vehicles hauran de ser subjectes d’una completa neteja i desinfecció posterior.

 

Com veieu és un problema logístic important que es multiplica quan el nombre d’animals creix i encara es multiplica més quan tens diversos focus que gestionar. Descartant l’atzar, si un no és completament estricte en tots els focus del brot pot involuntàriament permetre propagacions secundàries o el que és pitjor, en trànsit. Això pot explicar, ni que sigui parcialment, que en tres mesos a França encara estiguin bregant amb la soca H5N8.

 

Però aquesta, aquesta és una altra història.

Comentaris virus-lents (175): La bioseguretat és un cristall preciós amb moltes facetes.

Ja sabeu, qui em llegeixi, que sóc un viròleg de formació que em dedico ara a la gestió en una instal·lació de biocontenció de patògens perillosos, alguns potencialment mortals.

Quan es manegen patògens perillosos, no solament és necessari tenir-los continguts, dins d’unes instal·lacions que garanteixen que no siguin alliberats inadvertidament, sense voler, a l’exterior, si no que la gent que hi treballa ho faci de forma segura, evitant infeccions laboratorials que puguin ser transmeses a la família, o a la comunitat.

Tots aquests conceptes de bioseguretat i biocontenció, alguns altament tecnificats, són vistos de maneres diferents per persones diferents, en diferents moments de la vida de la instal·lació però també fins i tot en un moment concret, en un mateix dia de la instal·lació. No és el mateix l’arquitecte que dissenyarà l’edifici, que el personal investigador que hi treballarà, que el cap de manteniment que voldrà mantenir-lo en perfecte estat al llarg dels anys, que l’oficial de bioseguretat que ha de mirar que els procediments s’atinguin a l’ instal·lació i a l’inrevés, que el Director que ha de trobar finançament per pagar una instal·lació, de ben segur necessària, però també “cara”. Altre cop, les diferents facetes d’un cristall.

I la manera d’entomar la bioseguretat també està fortament condicionada pels patògens i les espècies animals o vegetals amb les que treballen. No és el mateix la bioseguretat i biocontenció en una instal·lació hospitalària (recordeu els casos d’Ebola, alguns a la península Ibérica, però també possibles casos de MERS coronavirus, SARS coronavirus, virus Crimea Congo, influenza altament patògena, que a la seva vegada serien molt diferents de les condicions per manegar infectats de Chikungunya o Zika, per exemple), que la bioseguretat en aqüicultura (on el que es tracta es evitar que els virus o bacteris amb els que experimentalment s’infecten peixos arribin a les aigües del voltant), que la bioseguretat vegetal (on el perill fonamental rau en la disseminació de les llavors, de plantes modificades, cap a l’exterior) com en la bioseguretat i biocontenció d’artròpodes infectats amb patògens zoonotics (on el perill no rau tant en el virus o bacteri manipulat, que també, si no en l’escapament de mosquits o altres artròpodes infectats amb un agent exòtic i la potencial establiment d’un cicle autòcton per infecció de persones al voltant de la comunitat). Les eines i les solucions en cada cas seran ben diferents. Com veieu, les diferents facetes d’un cristall, altre cop.

I després el món de les empreses, que aporten solucions tecnològiques als reptes de bioseguretat i biocontenció; com fer una instal·lació més segura, però alhora mes eficient; com descontaminar de forma efectiva zones afectades per un alliberament voluntari (per exemple un treball dins un box experimental), però també com descontaminar material infectat que ens ve decomissat pel cossos de seguretat; com descontaminar el personal en la seva sortida de la instal·lació; com eliminar de forma segura els residus que es generen dins la instal·lació; com transportar i eliminar aquells residus que no es poden processar dins; con moure a l’exterior i per l’exterior material biològic valuós (mostres, soques infeccioses) amb seguretat; aparells i sistemes barrera per protegir els treballadors de l’exposició directa al patogen, etc. I cadascú, fins i tot dins el mateix camp, fa aproximacions i dona solucions diferents. Altre cop, les diferents facetes d’un cristall.

 

KIDS62AWR

I finalment la formació. Diferents eines de formació, algunes totalment instal·lades en el e-learning, tant a nivell estatal com internacional, altres allotjades dins de cursos de postgrau o d’extensió universitària, altres portant la formació dins de l’entorn universitari, tant a professor s com a estudiants com als propis treballadors de la universitat. La formació, que és específica de cada persona, és per això difícilment estandaritzable, però que cal intentar homologar o fer convergir a uns mínims estàndards comuns. Altre cop, les diferents facetes d’un cristall.

 

englisch_biostoffv-G-wordml02000001

Doncs bé, algunes, que no totes, les facetes d’aquet cristall preciós seran observats amb detalls al 3er congres de la Asociación Española de Bioseguridad que tindrà lloc a Bilbao els dies 17 i 18 d’octubre i al que assistirem molta gent amb ganes d’escoltar, però també de dir la nostra.

Però aquesta, aquesta és una altra història.

Per a saber més us recomano que visiteu durant les properes setmanes www.aebios2016.info

Comentaris virus-lents (174): virus Zika i desinfectants: easy to be killed.

Encara que el virus Zika es transmet bàsicament per vectors també està descrita la seva transmissió a través de fluids corporals com semen i líquids vaginals (per més detalls consultar entrades prèvies) i té una fase de virèmia…per tant és susceptible d’arribar a l’exterior i contaminar objectes o superfícies.

 

Fins fa unes poques setmanes s’assumia que la inactivació o desinfecció de material contaminat amb Zika s’havia de fer seguint el que es sabia de la resistència a desinfectants i tractaments d’altres flavivirus, ja que el virus Zika és un flavivirus.

Disinfectant sprays

Ara però, ja tenim dades específiques pel virus Zika. Les dades, que es poden llegir en detall a l’enllaç al final de l’entrada, són:

  • Zika és completament inactivat quan entra en contacte amb desinfectants alcohòlics (isopropanol 70%, etanol 70%, DMSO/etanol 70%) amb temps de contacte de 1 minut.

  • Zika és completament inactivat quan entra en contacte amb solucions de hipoclorit sòdic del 1% (recordem que el lleixiu domèstic sense diluir està al 5%) per temps de contacte de 1 minut.

  • Zika és completament inactivat quan entra en contacte amb fixadors com paraformaldehid al 2% o glutaraldehid al 2% per temps de contacte de 1 minut.

lleixiu slide_25

Aquesta completa inactivació es mantingué encara que el virus es barregés amb quantitats creixents de matèria orgànica (com podria ser el semen, la sang), que en principi dificulta l’acció dels desinfectants (aquesta es la raó per la que es demana un rentat inicial exhaustiu de mans amb sabó abans d’aplicar cap solució desinfectant de base alcohòlica, per exemple).

 

Zika també és inactivat per la llum UV (les condicions experimentals, tanmateix no són les ambientals). En aquest cas, però, en presencia de molta material orgànica en dissolució la llum UV si bé inactiva el 99,95% dels virus presents deixa encara certa infectivitat residual.

 

Més important és l’altre dada. Quan es deixà dessecar el virus sobre una superfície i es recuperà a les 36 hores, vora un 95% dels virus han desaparegut, s’havien inactivat…sense fer-hi res. S’ha de dir que aquest efecte és un vell conegut pels que treballem en això. En aquestes mateixes condicions experimentals el virus Zika sobrevisqué més allà de tres dies, la qual cosa ressalta la necessitat d’efectuar una desinfecció correcta. Tanmateix no hi hagué títol infecciós, ni rastre, als 5 dies..una caiguda massa abrupte…potser un problema metodològic. En qualsevol cas una superfície contaminada que pateixi dessecació i insolació (llum UV) homogènies quedarà probablement “segura” en uns pocs dies sense aplicació de cap mesura desinfectant.

 

Escalfar és la solució, també; el vius es capaç de resistir temperatures de 50ºC per 5 min sense pèrdues d’infectivitat; tanmateix a 60ºC hi ha una pèrdua total d’infectivitat, per sobre de 5 log10 R o 99,999% d’inactivació. Aquest remei sembla també fàcil d’aplicar…

 

Si ens recolzem en el potencial inactivador del pH el virus únicament és estable en el rang entre 7 i 10, demostra la seva feblesa si entra en contacte amb pH entre 4 i 6 i pH de 11 i és totalment inactivat (més de 99,999%) per pH de 4 o inferiors o pH de 12 a 14. ¿Quina importància té això? Relativa, però si sabem que el lleixiu té un pH de 12  i que el vinagre té habitualment un pH per sota de 3 ja tenim remeis casolans i barats, per fer desinfecció de campanya.

 

No serà un article trencador però era un article necessari. Ara ja sabem que podem fer servir, i com fer-ho servir, per guarir-nos de potencials objectes contaminats amb el virus Zika.

zika-fact-card

Encara que l’autopista de transmissió continuen essent els mosquits i per aquestos calen mesures preventives (difícils) i executives (matamosques, molt més fàcils).

 

Però aquesta, aquesta és una altra història.

 

Enllaç original: http://wwwnc.cdc.gov/eid/article/22/9/16-0664_article

 

Comentaris virus-lents (166): Norovirus i Andorra: res a declarar…per ara.

La setmana passada va haver un cert rebombori per un brot considerable (per sobre de 4.000 afectats) de gastroenteritis deguda a aigua envasada que va afectar bàsicament a la zona metropolitana de Barcelona i a Tarragona. El vehicle, aigua envasada en garrafes, subministrada por la companyia de vending Eden i que ha resultat provenir d’una línia de producció de la planta Font d’Arinsal, a Andorra.

 

He sentit alguns comentaris sobre la necessitat de més controls de laboratori. El fons del comentari és cert i irrefutable però s’estavella amb la factibilitat o la relació cost-benefici dels mateixos. Els indicadors de la qualitat microbiològica de l’aigua són, segons la normativa europea, bacteriològics. La detecció de segons quines bacteris fecals implica la possibilitat de presència de virus, també de transmissió fecal-oral. Un aigua que doni positiu a aquests bacteris fecals en una mostra d’un volum concret, per exemple, 100 ml ha de ser retirada del consum. Però, desgraciadament se sap abastament que els virus poden estar present en aigües que ja no continguin aquests bacteris fecals viables, és a dir, la presència de bacteris anuncia possible presència de virus de transmissió fecal-oral (norovirus; astrovirus; virus de la hepatitis A; en temps passats, poliovirus) però l’absència de bacteris no implica absència paral·lela de virus. Els virus poden ser molt persistents i mantenir-se infecciosos per setmanes o mesos a l’aigua un cop hi arriben. Perquè no es fan proves de detecció de virus? Pel seu cost, perquè les tècniques moleculars ens donen senyal de la presencia del genoma del virus però no de que aquest virus sigui encara infecciós, perquè si volem trobar virus viables cal esperar dies, fins i tot setmanes de cultiu en línies cel·lulars (això els que són susceptibles de propagar-se, que no ho són tots), etc. Per tant des d’aquest punt de vista cal assumir que aquí tenim un forat pel que ocasionalment se’ns pot escolar un brot.

 

Res més sentir del brot al meu centre, CReSA, vaig enviar un correu intern dient més o menys…ja veureu com serà norovirus. La simptomatologia evident, l’autoresolucio de l’infecció, que és sempre benigne llevat casos molt particulars; l’apunt inicial a l’aigua com a mitjà de transmissió, eren pistes prou clares. Hi hauria altres virus que podrien mostrar una pistola fumejant com rotavirus o astrovirus, però norovirus acostuma a ser una elecció segura en països europeus.

Assumint la inevitabilitat del brot pel que fa a les proves bacteriològiques altra cosa són les errades procedimentals o saltar-se alguns controls recolzant-se en l’històric. Aixa, Ara el 20 d’abril publicava…”la línia de producció que proveïa l’aigua a Eden és de nova creació-va començar a operar a principis del mes d’abril-, per tant, no havia passat el darrer control oficial.” Mai sabrem si aquest control hagués pogut tenir impacte en la dinàmica del brot, o hagués permès alertar d’alguna mancança.

 

També sembla, per ara, que el problema podria raure en el reciclatge dels recipients. Així com les ampolles de litre i mig no es reciclen, són d’un sol ús, i no s’ha registrat, que se sàpiga, episodis de gastroenteritis d’aigua d’aquesta planta d’Arinsal per aquests envasos, les garrafes de les fonts d’aigua es reciclen entre usos. Dit altrament s’higienitzen, es desinfecten abans de rebre altre cop aigua de la font. Per desgràcia, els norovirus, molt petits, també són força resistents a la inactivació; són perfectament capaços de resistir pH àcids o bàsics (al voltant de pH 2 i pH 12, respectivament per 30 minuts a 37ºC) i necessiten un bon raig de lleixiu (de l’ordre de 300 ppm o més en funció de la presència de material orgànica) mentre que per “matar” bacteris fecals habituals n’hi ha prou amb una dosi de 70 ppm. A tall d’exemple us recordo que el lleixiu domèstic es ven com una solució d’hipoclorit sòdic a 40-50 g/l i això vol dir 40.000-50.000 ppm…per tant es pot diluir força i encara ser efectiu. Tanmateix suposo que la higienització dels recipients es deu fer per mètodes químics (el pH, probablement hidròxid sòdic) o per mètodes tèrmics i per aquests darrers els norovirus també són força resistents; poden resistir 60ºC per 3 minuts i 100ºC per un minut. Tot un petit milhomes de la natura microscòpica.

 

Aquí un apunt, tenint en compte la lleugeresa dels símptomes no descarto que hi hagi hagut casos de gastroenteritis per aigua en ampolles individuals (si assumim que el problema ve de l’aigua, de la font); a nivell domèstic aquests episodis són poc traçables i no permeten lligar caps; també seria interessant saber com ha acabat la investigació epidemiològica de un brot de gastroenteritis en dos hotels de la Massana, a Andorra, que es van reportar a la premsa andorrana el 24 de març. A nivell d’una empresa, d’una comunitat, que 2, 3 ó 5 treballadors emmalalteixin alhora vol dir un punt de connexió comú, més fàcil de traçar o d’aixecar l’alerta.

 

Pel que llegeixo s’han retirat més de 6000 garrafes dels lots produïts els dies 7, 8, 11, 12 i 13. El 9 i 10 no es treballava, que era cap de setmana. No tinc dades del nombre d’empreses afectades (en alguns llocs he llegit vora 200 empreses, encara que s’ha retirat l’agua de més de 900 localitzacions) ni per tant del nombre de garrafes directament involucrades però és un episodi de contaminació “estrany”.

 

Fem un petit càlcul…la dosi infecciosa de norovirus es suposa baixa (1-10 partícules infeccioses són suficient per disparar la gastroenteritis). Per tant aquestes 10 partícules havien d’estar en un got d’aigua consumit de la font (evidentment podem parlar de treballador assedegats que veuen com peixos però és una variable que deixarem fixada). Això vol dir que hi calien presència de 10 virus en 200 ml. Si hi ha 200 empreses afectades, assumint un parell de garrafes per empresa, dona 400 garrafes, que a 19 litres per garrafa dona uns 8.000 litres. Per tant, 40.000 gots de 200 ml i 400.000 norovirus assumint barreja homogènia. Recordem quants norovirus hi ha en un gram de femta d’un malalt de gastroenteritis (per més detalls veure entrada https://comentarisviruslents.org/2014/07/07/comentaris-virus-lents-16-norovirus-i-creuers-laxants/). Doncs sí, més de 1.000.000.000 virus per gram. Per tant caldria 1 mil·lèsima part d’un gram de femta, ben posat, per generar aquest brot. Acabant d’escriure l’entrada he llegit que la concentració de norovirus detectada a l’aigua ha estat anormalment alta (veure http://www.ara.cat/societat/Salut-culpa-Andorra-gastroenteritis-aigua-envasada-Eden-Aigua-Pirineu_0_1565243555.html) de l’ordre de 1.000-10.000 virus per litre; estaríem parlant llavors de 0,1-1 gr de femta.

 

norovirus vital-signs-transmission-lg

Desafortunades trobo les declaracions de Jordi Guix, secretari de la Agència de Salut Pública de Catalunya (ASPCAT) que en La Vanguardia del dia 19 senyalava (o li feien senyalar, un ja no sap): “La probabilitat de contagio de persona a persona es muy baja”. Poc encertada la frase perquè se sap que el norovirus un cop entra en una col·lectivitat arrasa, és molt transmissible…certament no se transmet de persona a persona però sí de persona a fomites i de fomites a persona. Per posar un exemple, si comparteixes un lavabo amb una persona que està en un episodi de gastroenteritis per norovirus, i no vas amb molt de compte, bé, ja pots trucar a la feina i dir que no aniràs en dos dies. Per més detalls veure l’entrada 16 del present blog. O millor encara, entreu a l’adreça http://www.cdc.gov/norovirus/ i mireu el vídeo Have You Ever Heard of Norovirus? És en anglès però és radicalment clar.

 

norovirus-2

 

En resum, ja tenim el culpable, i els que han fet la feina de recerca i identificació són de total confiança però ara queda el més dur que és trobar la via exacta de transmissió que implicarà aïllar el virus d’elements de la línia d’embotellat o confirmar errades o incidències en el procés d’higienització…sense descartar la font primigènia. Esperem que esmercin forces comandades per tot un Sherlock Holmes i no per un inspector Clouseau.

Però aquesta, aquesta és una altra història.

Comentaris virus-lents (135): Bioseguretat a Catalunya; entrenant, sembrant als futurs formadors.

Les últimes emergències virals mediàtiques (Ebola, MERS-Coronavirus, Chikungunya) no fan més que alimentar la necessitat d’una bona pràctica en el disseny, ús, manteniment de laboratoris o instal·lacions que treballin amb patògens d’elevada perillositat i greus conseqüències en cas del seu alliberament involuntari o malintencionat. També en el transport de materials infecciosos (no solament mostres valuoses, si no, el que és més important, encara que només sigui volumètricament, els residus infecciosos), en la correcta selecció i l’adequat ús dels equips de protecció individual (EPIs), en una adequada gestió del risc biològic, en l’adequada selecció dels processos de desinfecció i descontaminació, i en una gestió eficient i transparent dels accidents i les emergències, entre altres temes.

InfectiousSymbol

Per segon any una visió moderna i actual de tots aquests temes ha estat donada dins el marc del Postgrau “Estrategias en bioseguridad y biocontención” organitzat per la Universitat Autònoma de Barcelona, entre els dies 5 i 9 d’octubre, en sessions de matí i tarda, amb suports pràctics. El temari del Postgrau reflecteix fil per randa allò enumerat al paràgraf anterior i compta addicionalment amb una visita intensiva a les instal·lacions de IRTA-CReSA, una instal·lació de alta seguretat biològica de primer nivell europeu ubicada a Catalunya.

Aquest any he tingut el plaer novament de participar parlant de la guia CWA 15793 sobre “Gestión del riesgo biológico”, una guia que integra els conceptes de gestió de la qualitat i millora continua camb un enfocament principal sobre la gestió de la bioseguretat i la bioprotecció, però aquest és un altre tema que tractarem en el futur.

El que vull parlar és de la necessitat de formar personal en aquest camp. Les emergències biològiques continuaran succeint-se en el futur, amb major o menor cobertura mediàtica. Per informar adequadament a la població caldria que a tots els nivells hi hagués gent que entengués com es gestiona la bioseguretat, la biprotecció, com es maneguen els patògens, i el que és més important que una gestió “perfecte” del risc biològic no implica risc “zero” si no un reducció molt significativa del mateix que no evita, però, possibles accidents i/o conductes malèvoles. I quan dic tots els nivells, vull dir tots els nivells: policia, serveis d’emergències, funcionaris del Departament de Salut, responsables de prevenció a hospitals, membres de gabinets de comunicació, periodistes, etc.

Pel professorat que no quedi, però; per fer la formació més propera el Postgrau es limita a un màxim de quinze alumnes; aquest any han estat dotze alumnes, alguns d’ells iberoamericans. L’èxit del curs es mesura per l’opinió de l’alumnat i aquesta, per segon any, ha estat molt positiva com mostren les mètriques dels qüestionaris (l’estructura i contingut del curs, la qualitat dels continguts i del material docent, les visites i sessions pràctiques, i l’adequació a les expectatives han superat una puntuació de 9 sobre 10).

Qui vulgui saber més pot entrar a l’enllaç http://www.uab.cat/web/postgrado/curso-en-estrategias-en-bioseguridad-y-biocontencion/informacion-general-1206597475768.html/param1-3045_es/param2-2012/ que detalla el programa d’aquest curs ja passat.

Pel proper curs segur que es farà algun canvi per millorar-lo, o per entrar temes nous de resultes de les alertes biològiques que es generin. Pel que el risc biològic i la seva gestió, com tot a la vida, muta contínuament.

Però aquesta, aquesta és una altra historia.

Comentaris virus-lents (125): IRTA-CReSA dins la RELAB; …Umm, que és la RELAB?

La nota breu seria; IRTA-CReSA ha estat admès, s’ha incorporat a la RELAB.

Umm, us preguntaríeu, i què es la RELAB?

Potser convé llavors una mica d’introducció al tema…

bioterrorism signal

Un estat ha d’estar preparat, entre altres coses, per fer front a una amenaça de caire biològic, ja sigui purament natural o induïda per l’esser humà, el que venim a anomenar bioterrorisme.

L’aproximació de tancar fronteres en el cas dels patògens no té cap utilitat; els patògens no en coneixen i en el cas d’un acte de bioterrorisme no és útil perquè el problema ja s’ha desfermat. A més prous agents biològics susceptibles de transformar-se en una arma són relativament de fàcil d’adquirir o produir (propagar); són resistents a factors ambientals; poden tenir un poder altament incapacitant temporalment o permanentment (a les persones, als animals, a les collites), són contagiosos (efecte multiplicatiu) i suposen un baix risc pels terroristes (poden estar lluny de la zona quan es notin els efectes).

Actualment les actuacions es basen més en:

  • Sistemes de ràpida alerta
  • Plans de contingència (o el què faríem si…?)
  • Reserves de subministres o contramesures essencials
  • Sistemes de comunicació ràpida entre xarxes especialitzades

I pel que fa a una amenaça biològica cal:

  • Identificar l’amenaça (normalment lligat a la virulència del patogen, la seva via de transmissió i la quantitat alliberada)
  • Establir estratègies de reducció del risc (contenció del patogen, quarantena de zones i/o persones)
  • Quantificar el risc residual i establir decisions en funció d’un risc acceptable (recordem el risc “0” no existeix i després d’una amenaça biològica menys encara).
  • Fer un seguiment per avaluar si s’ha gestionat degudament el risc.

És evident que un estat present o un estat futur ha de preveure, fins on pugui, aquestes crisis, que mai seran del tot controlables, per apaivagar efectes i conseqüències (per poder contestar SÍ o NO a preguntes i escenaris prèviament plantejats); en poques paraules per no crear una segona crisi dintre o després de la crisi inicial.

Yes No disjuntive ID-10094976

Aquest és l’objectiu de la RELAB, que dins l’actual marc polític fou aprovada el febrer de 2009. La RELAB és la Red de Laboratorios de Alerta Biológica. En la RELAB es troben incorporades una sèrie d’àrees; salut pública; sanitat animal; sanitat alimentària; sanitat ambiental i sanitat vegetal. La finalitat de la RELAB és la de compartir i integrar coneixements i capacitats de centres i laboratoris tant en situacions de normalitat com de crisi, obtenint la màxima eficiència dels recursos disponibles per reforçar les defenses sanitàries front una potencial emissió deliberada d’agents biològics. No menys important, coordinar informacions i comunicacions derivades de les actuacions quan es participa en la resposta a l’emergència (aquí entra el concepte de intentar no generar una segona crisi després de l’esclat de la primera). Finalment la connexió de la RELAB amb altres xarxes d’alertes biològiques de la UE i de la OTAN és necessària per una adequada transmissió de dades i protocols.

Davant d’una amenaça biològica cal per un costat una ràpida detecció de la contaminació i una posterior descontaminació de la zona o espais afectats; secundàriament (des d’el punt de vista temporal, que no d’importància) tractament dels afectats i control de la malaltia (quarantena, per exemple). En una situació de pau, IRTA-CReSA formaria part d’aquest sistema de protecció que ajudaria a la ràpida detecció de la contaminació (amb el seu potencial de diagnòstic i les seves instal·lacions que garantirien una segura manipulació de l’agent biològic perillós) i podria col·laborar en la descontaminació amb la seva experiència en aquest camp; evidentment el tractament dels malalts quedaria per altres nòduls de la RELAB.

Igitur qui desiderat pacem, praeparet bellum, que podríem traduir per “qui desitgés la pau, caldria que es preparés per a la guerra”. S’ha fet molt d’abús d’aquesta frase, però, certament, no podem donar una resposta a segons quines amenaces si no tenim estructures organitzades, i alguns supòsits o mecanismes d’actuació no han estat pensants per avançat. O és que pensaríem en com tenir un cos de bombers quan les flames llepessin les parets de casa nostra?

Però aquesta, aquesta és una altra història.

Comentaris virus-lents (116): Ebola i desinfectants domèstics; noves dades.

Quan un s’enfronta a un virus al laboratori, o en mig d’una emergència, necessita posar distància entre ell i el virus. Això es pot aconseguir amb indumentària especial, molts cops hidròfoba, que repel·leix l’aigua i fluids i per tant evita l’entrada dels virus; amb mascaretes o sistemes de filtració d’aire, que els atrapen i eviten la seva inhalació; amb guants, botes, maneguets. Dins els laboratoris encara creem més distancies ja que manipulem les mostres dins cabines de seguretat biològica que generen una cortina d’aire que atrapa i conté els virus potencialment presents a mostres i materials.

Tanmateix cap sistema és absolut, completament segur i a més resulta que tot allò que es fa servir un cop, queda potencialment contaminat i el seu cost fa que sigui impossible assumir single use, un únic ús, un emprar i llençar. És aleshores quan els desinfectants entren en escena.

Quan els virus són letals, i per tant força difícil fer proves “in vitro” amb ells, moltes vegades recorrem a l’efectivitat demostrada dels desinfectants en virus de la mateixa família o bé virus que comparteixen característiques semblants però que són més “amables” a l’hora de treballar (bàsicament que no t’hi jugues la vida cada dia). Per característiques semblants entenem presència d’embolcall, estructura d’aquest embolcall, mida de la partícula, tipus i mida de l’acid nucleic, etc. Així, els desinfectants emprats per l’Ebola ho son més per proves indirectes, o escasses, que no per una munió de dades i cites bibliogràfiques.

A més, en una situació de crisi no pot ser que el desinfectant d’elecció sigui  el-no-va-més del desinfectants, distribuït per una o unes poques empreses. Calen desinfectants que pugis trobar a qualsevol llar, d’ampli espectre, de fàcil distribució i emmagatzematge, i de fàcil manipulació i ús, que no deixi residus poc gestionables ambientalment.

Dos que em venen al cap i que faig servir abundosament a la meva feina…l’etanol i el lleixiu domèstic.

I aquesta mateixa aproximació fan els autors de l’article (veure link al final) pel que fa a la desinfecció de l’Ebola.

Farem la discussió a partir de la gràfica del seu article.

Ebola viruses-07-01975-g002-1024-disinfectants

Si mireu el lleixiu domèstic que teniu a casa veureu que té entre 40-50 gr de clor actiu per litre. Això ve a ser un 4-5% de clor actiu. Els investigadors avaluaren l’eficàcia de solucions amb concentracions finals de lleixiu de 1%, 0,5%, 0,1% i 0,01% (si diluíssim el nostre lleixiu 5 vegades, o 10 vegades o 50 vegades o 500 vegades respectivament) sobre ebolavirus prèviament dessecats damunt superfícies d’acer inoxidable. Pel que fa a l’etanol barrejaren aquest amb aigua fins assolir una solució al 67% d’etanol. Pels dos desinfectants els temps escollits per veure la càrrega vírica que persistia foren 1 minut, 5 minuts i 10 minuts.

El lleixiu diluït al 0,01%  resultà del tot inefectiu fins i tot als 10 minuts de contacte. Quan era diluït 1/50 (al 0,1%) es notava efecte als 10 minuts però encara hi havia una forta infectivitat residual. Diferencialment, aplicar sobre superfícies contaminades amb Ebola solucions de lleixiu al 1% o al 0,5% era totalment efectiu als 10 minuts de contacte (més de 6 log10 de reducció del títol infecciós) però també per períodes més curts, 5 min. Per temps de contacte de 1 min la reducció del títol era de 2-3 log10, el desinfectant encara no ha pogut desplegar tota la seva acció i encara n’hi ha força de virus infecciosos. L’etanol al 67% fou extremadament eficient (no es detectaren virus infecciosos) per temps de contacte 5 i 10 minuts i per temps de contacte breus, 1 min, era clarament més efectiu que el lleixiu.

Algunes conclusions…

  • La Organització Mundial de la Salut (OMS) recomana aplicar solucions de clor disponible al 0,5% per desinfectar superfícies contaminades. Tot correcte i coherent. Però cal reforçar i tenir sempre en ment el temps de contacte perquè aquestes concentracions no tenen un efecte miraculós, cal deixar treballar al desinfectant. És la combinació de desinfectant adequat i temps de contacte prou llarg la que confereix seguretat. Ni tan sols la concentració més elevada assajada (1%) és efectiva durant el primer minut.
  • A la llum del resultats aplicacions de desinfectants per temps de contacte inferior als 5 minuts és jugar a la ruleta russa.
  • El etanol resulta més efectiu que el lleixiu i això es una bona noticia per tos aquells materials que pateixen corrosió si entren en contacte massa sovint amb l’hipoclorit sòdic. Però també per les nostres mans i pell. A més és menys tòxic i més fàcilment gestionable ambientalment.
  • Potser no calen fer recerca, i despesa, en desinfectants més efectius i derivar esforços en aquest camp a aquelles àrees terapèutiques que precisen dels recursos.

La bona pràctica microbiològica ens ajudarà a mantenir-nos a distància dels materials contaminats o dels malalts infectats però totes les barreres que fem servir cal desinfectar-les abans d’eliminar-les o reutilitzar-les. I això és el que fan els desinfectants; els polis dolents, amb el que el poli bo (el metge, l’infermer, l’investigador) ha de tenir una confiança “absoluta”, si volen fer bona parella.

Però aquesta, aquesta és una altra història.

Enllaç: http://www.mdpi.com/1999-4915/7/4/1975

Comentaris virus-lents (72): Bioseguretat a Europa; harmonitzant i deixant petja catalana.

Les últimes emergències virals mediàtiques (Ebola, MERS-Coronavirus, Chikungunya) no fan més que alimentar la necessitat d’una bona pràctica en el disseny, ús, manteniment de laboratoris o instal·lacions que treballin amb patògens d’elevada perillositat i greus conseqüències en cas del seu alliberament involuntari o malintencionat.

Des de fa més de quatre anys participo en iniciatives de formació de personal investigador però també militars i funcionaris a nivell europeu en temàtiques de bioseguretat, bioprotecció, avaluacions de risc, resposta a accidents, etc. La darrera iniciativa, un projecte europeu de títol BSL3/4 training school, títol clarament explicatiu, és un consorci d’experts de diferents procedències (Alemanya, Gran Bretanya, Bèlgica, Suècia, Catalunya) que durant 4 dies donem un curs intensiu d’aquestes temàtiques, dos cops a l’any. El que fa distintiu aquest curs és que juntament a les sessions de classe presencial, o magistral, del matí n’hi ha sessions pràctiques de tarda.

A les classes de matí es tracten temàtiques com el disseny d’instal·lacions d’alta seguretat biològica, accidents amb patògens i conseqüències, transport de material infecciós, com funcionen uns laboratoris BSL4; con funciona una instal·lació de nivell de bioseguretat 3 amb grans animals; inactivació de residus; descontaminació amb formaldehid i peròxid de di-hidrogen; desinfectants i desinfecció…

A les sessions pràctiques de la tarda els assistents entren en una autèntica instal·lació de nivell 3 i experimenta en les seves pròpies carns els canvis d’indumentària; les dobles o triples capes de guants i la disminució d’habilitat que això suposa i, dins de cabines de seguretat biològica practica procediments segurs de pipeteig; sembra de patògens com Bacillus anthracis; descontaminació de solucions d’ àcids nucleics per filtració; propagació vírica; assajos d’inactivació vírica; descontaminació de potencial contaminació per espores d’àntrax de cabines; com respondre a un accident (simulacre), etc.

Aquesta combinació i el fet que cada professor pren un parell d’alumnes com a tutor al llarg de les sessions pràctiques fa intensa, però alhora enriquidora, profitosa i divertida la experiència, parlant com a professor; caldria preguntar als alumnes encara que el feedback ha estat sempre bo.

L’èxit del curs es mesura pel fet que sempre hi ha un llarg llistat d’espera. De fet únicament s’admeten 10 alumnes per sessió i la llista d’espera no ha baixat mai de la trentena d’aspirants. Ajuda el fet que l’alumne únicament ha d’aportar al voltant de 350 euros perquè tota la resta de despeses (viatge, allotjament, menjars, material emprat, experts) estan cobertes pel mateix projecte europeu.

Però tot té un final, o un canvi transfigurador. Aquest projecte europeu s’acaba i s’ha decidit fer una sessió extra del curs que hostatjarem a Barcelona, el mes de març de 2015. Serà pels experts tot un canvi des de la freda però encantadora Göttingen a la més mediterrània però també fantàstica Barcelona.

La meva missió com a hoste, i la de CReSA com a institució que hostatjarà el curs a les seves instal·lacions, serà igualar (difícil) o superar (quasi impossible) les sessions prèvies i discutir, al final, la possibilitat d’estendre en el temps, en aquest format o en algun altre d’equivalent, aquesta experiència realment útil i que té una forta demanda.

Però aquesta, aquesta és una altra historia.