comentarisviruslents

Aquest blog és una seguit de comentaris personals i probablement poc transferibles sobre ciència i política.

Archivos en la Categoría: Hantavirus

Comentaris virus-lents (160): El Niño pot portar epidèmies sota el braç.

Està descrit que les condicions o fenòmens climàtics d’abast mundial, com és el fenomen de El Niño, conegut en el món científic com a ENSO (El Niño-Southern Oscillation El Niño-Oscil·lació del Sud), poden tenir impactes seriosos en la salut de molt amplies zones geogràfiques, particularment incrementant la transmissió de malalties infeccioses. Per saber més sobre ENSO aneu a https://ca.wikipedia.org/wiki/El_Ni%C3%B1o.

Estem parlant d’un fenomen cíclic però amb una periodicitat variable. Es repeteix des de fa segles, en cicles de 3 a 6 anys, amb una via d’anada (El Niño) i una de tornada (La Niña). A més, aquest fenomen no segueix cap calendari humà i tampoc hi ha una definició oficial o comunament acceptada de quan es pot dir que hom està en un event “El Niño”. Si heu llegit l’enllaç anterior sabreu que Els Niños molt forts succeeixen cada 50 anys, en mitjana; els Niños normals o canònics succeeixen cada 3 o 4 anys, en mitjana. Aquests tenen sovint efectes benèfics sobre les collites i el manteniment dels aqüífers i altres recursos en aigua, però provoquen danys apreciables un cop cada 10 anys aproximadament. Aquests cicles són, ara per ara, independents del tant esmentat canvi climàtic, la pujada de la temperatura per l’activitat humana, però el més probable és que aquest darrer l’afecti exacerbant els seus efectes (bàsicament extremant períodes de sequera o de pluges intenses) i alterant la seva freqüència.

Ara per ara, “El Niño” genera de forma sistemàtica episodis de sequera a la zona nord d’Amèrica del Sud i a Austràlia, Indonèsia, Filipines, i al Sud-est africà, incloent Madagascar. Per contra acostuma a generar molta pluviositat al  nord d’Argentina i Uruguay, al sud-est dels EEUU, fins Arizona i a la zona de la vall del Rift (Etiòpia, Kenya, Sudan del Sud, Uganda,etc.), a al sud de la India, incloent Sri Lanka.

Fenòmens com El Niño poden tenir conseqüències directes per a la salut al causar danys a les infraestructures, o per derivar recursos sanitaris no sempre suficients a prioritats puntuals. Però El Niño també té un efecte indirecte, al generar pèrdues de collites o ramats, gana, o malnutrició, i molt sovint migracions humanes; tots ells factors que faciliten la propagació de malalties infeccioses, al posar en contacte població no immunitzada amb poblacions infectades o carriers, a la recerca de menjar.

Una gràfica que resumeix aquests efectes es mostra a continuació…

ENSO potencials efectes salut pública

Inspirat per Kovacs et al., Lancet 2003

 

I quins exemples de malalties es veuen afectades per ENSO?

La incidència de la malària, una entre moltes malalties de transmissió vectorial, a diferents parts del món, es pot veure afectada per ENSO, incrementant la seva incidència o disminuint-la, en una relativament boja combinació d’efectes. A les terres altes del nord del Pakistan, temperatures suaus a la tardor i l’hivern, associades amb El Niño, incrementen la transmissió de malària. També a Uganda i Rwanda, temperatures més altes i pluges més intenses afavoreixen la malària però alhora pluges molt intenses (Tanzània, 1997) arrastraren tants punts de posta de vectors que els casos de malària descendiren. Brots de malària a Sri-Lanka, Colòmbia i Irian Jaya s’han lligat a sequeres causades per El Niño.

També s’ha trobat un lligam entre les epidèmies del dengue i ENSO a zones del sud-est asiàtic, Sud-Amèrica i les terres insulars del Pacífic. Aquí però hi ha un element distorsionador i és que en molts casos els vivers dels mosquits són producte de la intervenció, involuntària, humana.

També s‘ha relacionat ENSO i brots d’arbovirus indígenes d’aquell continent, com l’encefalitis Murray Valley, que es manifesta després de riuades i inundacions associades a “La Niña”. O la poliartritis epidèmica causada pel Ross River virus.

Un altre cas el tenim amb la febre de la vall del Rift causada pel Rift Valley Fever Virus (RVFV), una malaltia de transmissió arboviral que pot afectar intensament els ramats i de retruc les poblacions humanes que depenen d’ells. La inundació dels habitats dels mosquits determinen la seva proliferació i l’inici del brot en animals; els humans també queden exposat a la fiblada del mosquit o a l’exposició de carn, llet o sang contaminada amb RVFV.

Les més gran epidèmies de RVF a Àfrica coincideixen amb events “El Niño” particularment intensos; 1997-1998 i 2006-2007, per exemple; aquest darrer, causà més de 200.000 infectats i 500 morts a Kenya, Somàlia, Tanzània, Sudan i Madagascar, així com milions d’euros de pèrdues en bestiar i prohibicions d’exportació.

Els models matemàtics i climatològics dissenyats per preveure aquests fenòmens assenyalen que per aquest any 2016 les zones més perilloses serien Sudan, Etiòpia, Somali, Kenya i Tanzània. Aquest models tenen interès perquè poden permetre uns mesos abans iniciar dues accions fonamentals de caràcter preventiu com serien; vacunació dels animals (pel que fa a RVF això és possible ja que hi ha una vacuna per animals, encara no per humans) que sempre ha d’anar abans de la infestació de mosquits; i control del vector, que implica aplicar agents larvicides als vivers de mosquits abans que les pluges intenses, les inundacions els multipliquin.

També ENSO pot afectar les malalties transmeses per rosegadors. El nombre de rosegadors s’incrementa habitualment després d’hiverns temperats i humits. A Nou Mèxic els casos de pesta (Yersinia pestis) són més freqüents després d’hiverns i primaveres plujoses. El descobriment dels Hantavirus (si voleu saber més aneu a l’entrada 10, https://comentarisviruslents.org/2014/06/25/comentaris-virus-lents-10-el-virus-exposit-no-sin-nombre/) i els posteriors brots estan lligats també a ENSO però de forma oposada. A un plujós fenomen d’ENSO seguí una sequera que apropà molt els rosegadors a altres fonts alternatives de menjar, graners, incrementant les interaccions rosegadors-humans. Durant i després de l‘episodi ENSO de 1997-98 les poblacions de rosegadors es multiplicaren per 20, i els casos de síndrome pulmonar per hantavirus es multiplicaren per cinc.

Però on l’efecte és potser més directe és a les infeccions entèriques; les riuades  i inundacions porten a la contaminació dels subministraments d’aigües. Als països tropicals les malalties entèriques tenen un fort repunt a l’època de pluges, i qualsevol fenomen que les reforci, com ENSO, les intensifica. Hi ha estudis que correlacionen la incidència de còlera a Bangladesh i la temperatura de l’aigua superficial a la badia de Bengala, que de retruc afectaria l’abundància de plàncton, un reservori de Vibrio cholerae. De fet, hi ha un model validat que relaciona ENSO amb les epidèmies de colera (Vibrio cholerae) a Dhaka, la capital de Bangladesh, amb 7 milions d’habitants densament empaquetats; la epidèmia es pot predir amb quasi un any d’avançament segons el model climàtic.

Sigui per causes climatològiques locals, no relacionades amb ENSO, sigui pels patrons multianuals relativament anàrquics d’ENSO o sigui per l’escalfament global de la Terra a conseqüència del canvi climàtic, el clima, impactant sobre les poblacions i nivells d’activitats de vectors o dels seus hostes i les interrelacions entre ells, té un efecte continu, i potser ara mateix manifestament unidireccional, en l’emergència o dispersió d’infeccions víriques i bacterianes.

Però aquesta, aquesta és una altra història.

Comentaris virus-lents (132): Persistència ambiental d’agents patògens selectes Categoria A.

L’alliberament de patògens letals amb finalitats bioterroristes pot tenir efectes devastadors, provocant un daltabaix social amb pèrdues de vides humanes, carestia de menjar, mortalitat de ramats, i desbaratament de la economia. Aquest potencial és tan més gran quan més es coneix agent i malaltia i més fàcil de manipular o exacerbar és (per tant és màxim ara, encara que les contramesures també han avançat espectacularment).

Un agent biològic potencialment “útil” ha de ser fàcilment produïble i dispersable (aire, aigua, menjar, terres i fomites), ha de causar un efecte retardat i poc traçable (a diferència dels agents químics i de moltes toxines, l’efecte depèn de la replicació dins l’hoste, la qual cosa garanteix un retard de dies, si no setmanes, des de la dispersió a l’aparició de simptomatologies), i ha de ser prou mortal o incapacitant per suposar un repte sanitari o social de primer ordre ja que el que es cerca es generar nerviosisme o histèria, potser més que el dany directe produït.

bioterrorism signal

D’això explicat és evident que una part important de l’efecte d’un agent bioterrorista estarà lligat a la seva capacitat de persistència o viabilitat en el medi ambient en el que sigui alliberat. Alhora, la inactivació o pèrdua de viabilitat en aquestes circumstàncies  tenen a veure amb els processos de descontaminació a seguir a les àrees afectades, i a la delimitació de les mateixes. A més, a l’hora d’alliberar l’agent pot ser que es faci servir una via que no sigui “natural” permeten que el patogen entri també a l’organisme per una via no clàssica. El potencial de transmissió, doncs, estarà lligat al mètode de transport o disseminació i la persistència del patogen en el medi ambient particular en el que sigui alliberat.

No tots els agents biològics tenen potencial bioterrorista. Aquells que ho tenen, pels seus efectes intrínsecs però també pels extrínsecs (socials) se inclouen a la “Category A Select Agents” del Centre de Control de Malalties (CDC, Centers for Disease Control, en anglès). Aquest agents són els virus de la verola, l’antrax (Bacillus anthracis), la pesta (Yersinia Pestis), Franciscella tularensis (agent causal de la tularèmia) i els agents virals causants de febres hemorràgiques (febre de Lassa, febre hemorràgica de Junin, febre hemorràgica veneçolana dins la família Arenaviridae; hantavirus dins la família Bunyaviridae; febres hemorràgiques d’Ebola i Marburg a la família Filoviridae; encefalitis de Sant Louis i encefalitis Japonesa tipus B per la família Flaviviridae). Tanmateix hi ha agents que no estan a la llista que podrien ser emprats com agents bioterroristes com el SARS o el MERS Coronavirus, per exemple.

Tots els patògens esmentats poden arribar al medi ambient a través de les secrecions o excrecions d’animals o persones infectades, en alguns casos a concentracions prou elevades. Des de la seva sortida a l’exterior el patogen es veurà afectat per una sèrie de factors fora del seu control com la temperatura, l’humitat relativa, dessecació, efecte de la radiació ultravioleta. El factor clau, la temperatura; particularment pels agents que no podem replicar-se o propagar-se a l’exterior, com serien els virus, com més alta és la temperatura més progressa la inactivació, menys virus quedaran disponibles per infectar persones o animals. La inactivació durant la dessecació dels aerosols o de l’aigua en la que està l’agent, influïda a l’hora per la humitat relativa ambiental té també importància quan parlem d’aerosols o fomites.

Per poder fer comparacions els investigadors recorrem a paràmetres com T90 o T99, que podrien traduir com el temps necessari per que caigui la infectivitat un 90 o un 99% respectivament. Un 90% de caiguda d’ infectivitat, que restin 10 partícules infeccioses on inicialment havien 100, també pot expressar-se con 1 log10R (1 logaritme de reducció del títol infecciós); un 99% d’inactivació, són doncs 2 log10R. Aquestos càlculs es fan assumint en molts casos que les cinètiques de inactivacions són lineals, és a dir, si un agent té una T90 de 1 dia, la T99 serà de dos dies…i la T99,99 seria de 4 dies. Els que ens dediquen a estudiar la inactivació vírica i bacteriana sabem que no és ben bé així, però de vegades cal treballar amb la brotxa grossa, amb traç gruixut. Anem ara a donar algunes dades de persistència de patògens “letals” en diferents ambients on podrien ser dispersats…

Aerosols: Les formes vegetatives bacterianes són molt més sensibles que les espores bacterianes; de la mateixa manera els virus amb embolcall pateixen durant la formació (moltes vegades implica una liofilització, amb deshidratació prèvia) i exposició de l’aerosol la inactivació per pèrdua de contingut d’aigua i acció radiació ultravioleta. Cal comptar que del títol inicial que es liofilitza es passarà a un títol que pot ser significativament inferior; addicionalment, durant els primers minuts de l’aerosolització s’ha descrit una inactivació major que en moments posteriors. Les formes de resistència, les espores, però, poden persistir per molts mesos a l’aigua de llacs, mars, a la llet i per anys, dècades inclús, en papers o tèxtils, però també a sols i terres. Yesinia pestis presenta T90 i T99 de 30 minuts i 60 minuts respectivament a 26ºC i 50%  d’humitat relativa (HR). En funció de la HR aquestos valors canvien; per HR per damunt del 85% la supervivència és menor. Pel virus Vaccinia, un model del virus de la verola, a 22ºC i 20% HR els valor de T90 i T99 són 55 hores i 5 dies aproximadament, i a les pitjors condicions (32-33ºC) calen 9 hores per assolit T90. Per Franciscella tularensis els valors mitjans estan en un màxim de 2 hores per T90. Pels virus hemorràgics (Arenaviridae, Flaviviridae,…) a temperatures sobre els  20-25ºC els valors de T90 es mouen entre 1 i 2 hores. Sense que sigui un comportament general sembla que HR mitges o baixes (per sota 50%) afavoreixen persistència de virus i bacteris en forma aerosolitzada.

bioterrorism

Fomites:: La persistència en fomites està lligada a les pròpies característiques de la fomite, o superfícies, de la temperatura i de la HR. A tall d’exemple no són el mateix superfícies poroses com fustes, tèxtils i papers que superfícies no poroses com plàstics, acer inoxidable, alumini, vidre. Yersinia pestis manté millor la seva viabilitat en superfície poroses com el paper (a 20ºC la T90 està en 12-24 hores; si han arribat a la fomite 106 bacteris (un milió de bacteris) caldran un mínim de 6 dies, si la inactivació és lineal, per poder començar  a assumir que aquesta fomite no pot propagar la infecció). Per Franciscella, a 25ºC en metall, la T90 està entre 15 i 87 hores depenent de la HR; pels virus hemorràgics entre 1 i 2 hores i pel virus Vaccinia, T90 de 100 a 180 hores.

Aigües: Clarament el medi en el que s’han fet menys estudis; abunden però els estudis per patògens vírics i bacterianes de transmissió fecal/oral; aquests patògens de Categoria A també poden secretar-se i excretar-se i arribar a rius i llacs. A més tant Franciscella turalensis com Bacillus anthracis poden propagar-se en el medi ambient en absència d’hoste. Yersinia pestis és capaç de persistir per 16 dies en aigües, i si aquestes s’aerosolitzen poden ser infeccioses; novament la ingesta no té una gran capacitat de transmissió, ja que no és la ruta habitual de transmissió. La persistència d’espores de Bacillus anthracis és espectacular i es xifra en dècades o segles. Les formes vegetatives però tenen T90 d’uns pocs dies. Altre cop, la ruta de entrada, “massa original” dificulta molt la posterior infecció. Per virus de la família Hantavirus es precisen de 20 dies per assolir caigudes de 99,9%. Vaccinia virus té T90 de 3 a 5 dies depenent del tipus d’aigua, a temperatures de 19-23ºC.

Terres: Pels virus, els terres funcionen com les fomites i estan subjectes als mateixos agents: temperatura, HR (o activitat d’aigua). Bacillus i Franciscella poden propagar-se en condicions favorables. Y.pestis pot persistir per més de 10 mesos a sols a 4-8ºC, a terres amb un adequat contingut de matèria orgànica i humitat, i per més de 3 mesos a 20-22ºC. Les espores de Bacillus poden persistir per anys, més enllà de la nostra vida.

De tot allò mostrat es poden extreure unes poques generalitzacions:

  • Totes les dades s’han d’agafar amb prevenció; recordem que les cinètiques no són lineals, que és molt habitual una forta inactivació inicial i una lenta inactivació posterior de les partícules infeccioses restants. Si de cas les dades s’han d’agafar com valors mínims, períodes de temps mínims.
  • Sembla que l’estabilitat està promoguda en els ambients aquàtics (particularment favorables per Franciscella tularensis) i és més reduïda en els processos d’aerosolització i persistència en fomites. Com si diguéssim (sobre tot pels virus i les formes vegetatives) la dessecació és garantia raonable de reducció intensa de l’infectivitat.
  • La forma aerosol és transitòria, i “ràpidament” es diposita sobre superfícies líquides (aigües), o fomites (superfícies sòlides). D’aquests compartiments poden tornar-se a donar fenòmens d’aerosolització.
  • Els virus, però, semblen més estables en forma aerosol que les formes vegetatives bacterianes.
  • Vaccinia (model de la verola) i les espores de anthracis són els agents bioterroristes més estables a les condicions mediambientals, en forma natural, no modificada.

Poques conclusions i potser massa generals, pensareu, no?. Però és el que sovinteja a la microbiologia ambiental i més quan bona part de les dades estan classificades.

Però aquesta, aquesta és una altra història.

Comentaris virus-lents (113): El ABC del bioterrorisme.

Què és el bioterrorisme? Aquell terrorisme que vol treure profit de l’efecte de l’alliberament o disseminació intencional de virus, bacteris o toxines, ja siguin naturals o prèviament modificats per l’ésser humà.

El focus no ha de ser necessàriament l’ésser humà. El focus pot estar en els animals o les plantes ja que a un estat, a una població, se la pot posar de genolls també per fam. Recordeu l’epidèmia del virus de la febre aftosa (foot-and-mounth disease virus) a Gran Bretanya el 2001 i el trasbals econòmic que suposà per un país desenvolupat que no tenia d’enfrontar-se a una segona crisi simultània, com seria una guerra.

En condicions “ideals” l’agent ha estat modificat per la mà humana incrementant la capacitat de generar malaltia, o la seva resistència a factors ambientals o a medicines, o millorant la seva capacitat de disseminació. “Idealment” també, interessen agents que tinguin una certa latència, que generin el seu efecte passats alguns dies per dificultar o impossibilitar la recerca epidemiològica posterior. Aquests llargs períodes d’incubació, a més, permetent una més gran penetració de la infecció a la població abans de que sigui possible cap diagnòstic. Així, un únic disseminador (bioterrorista) podria assolir diversos objectius (alliberar l’agent biològic) en diferents llocs abans que l’atac no fos ni tan sols sospitat pel sistemes de vigilància. Encara que un nombre important de persones comencessin a manifestar símptomes no específics pocs dies després de l’atac, a la comunitat mèdica li costaria un cert temps (dies o setmanes) en unir les peces del trencaclosques i provar l’origen bioterrorista de l’epidèmia. Les vies de disseminació són totes les possibles; aire, aigua o menjar.

bioterrorism

L’atractiu dels agents biològics ve de que són relativament fàcils i barats d’obtenir, es poden disseminar amb certa facilitat, i generen una disrupció, un pànic, una histèria, un caos en la població que pot ultrapassar llargament l’efecte real del brot o de la malaltia. Tanmateix l’ús convencional al camp de batalla clàssic té importants limitacions; els patògens no distingeixen banderes i no destrien entre les forces enemigues i les pròpies; ni tampoc entre la població pròpia i l’aliena.

El bioterrorisme no necessàriament cerca causar un nombre gran de morts immediates per fer efectiu; de fet, la majoria del agents biològics estan etiquetats com “agents incapacitants”, que no produeixen malalties letals. Són més “efectius” si incapaciten i posen en tensió els sistemes de salut a l’inundar-los de centenars o milers de malalts infectats, ultrapassant les reserves de medicaments o altres mesures terapèutiques i les instal·lacions d’aïllament o contenció.

Als Estat Units, els agents biològics que tenen potencial per suposar una amenaça greu per la salut i la seguretat pública son etiquetats com “select agents”, o “agents selectes”.

El Centre de Control de Malalties (Center for Disease Control, CDC) divideix aquests agents en 3 categories; A, B i C. Anem per parts:

  • Categoria A: Agents d’alta prioritat, que poden transmetre’s i disseminar-se fàcilment, resultant en altes taxes de mortalitat, amb un fort impacte a la salut publica, i potencials generadors de situacions de pànic. Dintre d’aquest grup es troba Francisella tularensis (causant de la tularèmia), Bacillus anthracis (àntrax), el virus de la verola, la toxina botulínica, Yersinia pestis (causant de la pesta bubònica, veure entrades 69 i 73), i els virus de febres hemorràgiques (no solament Filovirus, com Ebola i Marburg, si no també Arenavirus, com els virus Lassa i Machupo).
  • Categoria B: Agents amb moderada capacitat de transmissió i disseminació i baixes taxes de mortalitat. Dintre d’aquest grup es troben especies de Brucella, Burkholderia, Rickettsia, Coxiella, Chlamydia; Vibrio cholerae (el bacteri, que no virus, del colera), Cryptosporidium parvum; i bacteris de transmissió alimentària com especies de Salmonella, Shigella, Staphylococcus aureus o Escherichia coli enteropatogèniques com la E.coli O157:H7.
  • Categoria C: patògens “naturals” emergents que poden ser manipulats per afavorir la seva disseminació massiva; o agents fàcils d’obtenir o produir, amb altes taxes de mortalitat o amb potencial impacte en salut pública. Dintre d’aquest darrer grup tindríem els Hantavirus (veure entrades 10 i 102), els virus Nipah (veure entrada 102), el SARS coronavirus (veure entrades 35, 36 i 37), o el VIH/SIDA (veure entrades 79, 91, 92, 98 i 104).

De bastant d’ells hem parlat a diferents entrades del blog. Feu una cerca per categories i trieu…si voleu.

Els agents de la categoria A mereixeran una entrada especifica al blog, properament.

Realment ells, els patògens, passaven per allà, bé, ells ja hi eren i som alguns de nosaltres els que els forcem la mà.

Però aquesta, aquesta és una altra historia.

Comentaris virus-lents (113): El ABC del bioterrorisme.

Què és el bioterrorisme? Aquell terrorisme que vol treure profit de l’efecte de l’alliberament o disseminació intencional de virus, bacteris o toxines, ja siguin naturals o prèviament modificats per l’ésser humà.

El focus no ha de ser necessàriament l’ésser humà. El focus pot estar en els animals o les plantes ja que a un estat, a una població, se la pot posar de genolls també per fam. Recordeu l’epidèmia del virus de la febre aftosa (foot-and-mounth disease virus) a Gran Bretanya el 2001 i el trasbals econòmic que suposà per un país desenvolupat que no tenia d’enfrontar-se a una segona crisi simultània, com seria una guerra.

En condicions “ideals” l’agent ha estat modificat per la mà humana incrementant la capacitat de generar malaltia, o la seva resistència a factors ambientals o a medicines, o millorant la seva capacitat de disseminació. “Idealment” també, interessen agents que tinguin una certa latència, que generin el seu efecte passats alguns dies per dificultar o impossibilitar la recerca epidemiològica posterior. Aquests llargs períodes d’incubació, a més, permetent una més gran penetració de la infecció a la població abans de que sigui possible cap diagnòstic. Així, un únic disseminador (bioterrorista) podria assolir diversos objectius (alliberar l’agent biològic) en diferents llocs abans que l’atac no fos ni tan sols sospitat pel sistemes de vigilància. Encara que un nombre important de persones comencessin a manifestar símptomes no específics pocs dies després de l’atac, a la comunitat mèdica li costaria un cert temps (dies o setmanes) en unir les peces del trencaclosques i provar l’origen bioterrorista de l’epidèmia. Les vies de disseminació són totes les possibles; aire, aigua o menjar.

bioterrorism

L’atractiu dels agents biològics ve de que són relativament fàcils i barats d’obtenir, es poden disseminar amb certa facilitat, i generen una disrupció, un pànic, una histèria, un caos en la població que pot ultrapassar llargament l’efecte real del brot o de la malaltia. Tanmateix l’ús convencional al camp de batalla clàssic té importants limitacions; els patògens no distingeixen banderes i no destrien entre les forces enemigues i les pròpies; ni tampoc entre la població pròpia i l’aliena.

El bioterrorisme no necessàriament cerca causar un nombre gran de morts immediates per fer efectiu; de fet, la majoria del agents biològics estan etiquetats com “agents incapacitants”, que no produeixen malalties letals. Són més “efectius” si incapaciten i posen en tensió els sistemes de salut a l’inundar-los de centenars o milers de malalts infectats, ultrapassant les reserves de medicaments o altres mesures terapèutiques i les instal·lacions d’aïllament o contenció.

Als Estat Units, els agents biològics que tenen potencial per suposar una amenaça greu per la salut i la seguretat pública son etiquetats com “select agents”, o “agents selectes”.

El Centre de Control de Malalties (Center for Disease Control, CDC) divideix aquests agents en 3 categories; A, B i C. Anem per parts:

  • Categoria A: Agents d’alta prioritat, que poden transmetre’s i disseminar-se fàcilment, resultant en altes taxes de mortalitat, amb un fort impacte a la salut publica, i potencials generadors de situacions de pànic. Dintre d’aquest grup es troba Francisella tularensis (causant de la tularèmia), Bacillus anthracis (àntrax), el virus de la verola, la toxina botulínica, Yersinia pestis (causant de la pesta bubònica, veure entrades 69 i 73), i els virus de febres hemorràgiques (no solament Filovirus, com Ebola i Marburg, si no també Arenavirus, com els virus Lassa i Machupo).
  • Categoria B: Agents amb moderada capacitat de transmissió i disseminació i baixes taxes de mortalitat. Dintre d’aquest grup es troben especies de Brucella, Burkholderia, Rickettsia, Coxiella, Chlamydia; Vibrio cholerae (el bacteri, que no virus, del colera), Cryptosporidium parvum; i bacteris de transmissió alimentària com especies de Salmonella, Shigella, Staphylococcus aureus o Escherichia coli enteropatogèniques com la E.coli O157:H7.
  • Categoria C: patògens “naturals” emergents que poden ser manipulats per afavorir la seva disseminació massiva; o agents fàcils d’obtenir o produir, amb altes taxes de mortalitat o amb potencial impacte en salut pública. Dintre d’aquest darrer grup tindríem els Hantavirus (veure entrades 10 i 102), els virus Nipah (veure entrada 102), el SARS coronavirus (veure entrades 35, 36 i 37), o el VIH/SIDA (veure entrades 79, 91, 92, 98 i 104).

De bastant d’ells hem parlat a diferents entrades del blog. Feu una cerca per categories i trieu…si voleu.

Els agents de la categoria A mereixeran una entrada especifica al blog, properament.

Realment ells, els patògens, passaven per allà, bé, ells ja hi eren i som alguns de nosaltres els que els forcem la mà.

Però aquesta, aquesta és una altra historia.

Comentaris virus-lents (102): La llista de virus més perillosos? N’hi ha moltes, aquí una.

Tota llista que fem implica escollir i prioritzar. Per tant no deixa de reflectir aquell que fa la llista, en aquest cas, de virus en funció de la seva taxa de mortalitat. Els que la llegeixen han de tenir molt clar que una llista com aquesta mai podrà copsar l’enormitat de la variabilitat vírica i que potser algun virus existent sigui més perillós que els aquí descrits i que, senzillament, encara no s’ha manifestat entre nosaltres. 

Els Lissavirus: Aquest gènere compren no sols el virus de la ràbia (que causa la mort a quasi tothom que resulta infectat) si no també virus com el  Duvenhage, el Mokola, o els lissavirus de ratpenats australians. Encara que es reporten pocs casos anualment, exceptuant els casos de ràbia, que acumulen més de 50.000 morts anuals al món, aquells que es coneixen són sempre fatals. En el cas de la ràbia, si no s’administra una profilaxis post-exposició, aquesta infecció, que progressa cap a una encefalitis (inflamació del cervell) aguda, és gairebé mortal amb la manifestació de símptomes. Els ratpenats son els vectors transmissors d’aquest virus, amb l’única excepció del Mokola. Per la ràbia hi ha vacunes altament efectives, inclús si s’administra a post-exposició, poc després de l’event infecciós. Si l’infecció avança, i els símptomes treuen el cap, no hi ha tractament.

Els filovirus. Potser al capdavant de tots, el virus Marburg. Porta el nom d’un poble petit i idíl·lic a la vora del riu Lahn (Alemanya). El virus Marburg és un virus de febre hemorràgica, del gènere Filovirus com l’Ebola. Igual que amb l’Ebola, el virus Marburg provoca convulsions i hemorràgia de les membranes mucoses, pell i òrgans. Té una taxa de mortalitat que arriba al 90 per cent.Hi ha cinc soques del virus Ebola, quatre amb noms de països i regions d’Àfrica: Zaire, Sudan, Tai Forest, Bundibugyo i una cinquena, Reston, d’un poble als EEUU. El virus Ebola Zaire és el més mortal, amb una mortalitat que sovinteja el 90%. És la soca actualment activa a Guinea, Sierra Leone i Libèria. Fins aquest any sense cap vacuna realment disponible; el tractament continua sent el suport de les constants vitals.

Els Hantavirus inclou diverses tipologies virals que desencadenen dues síndromes prou diferenciades: febre hemorràgica amb síndrome renal (i que s’estén per Europa, Àfrica i Asia) o les síndromes pulmonars, respiratoris, reclosos a tot el continent americà. La taxa de mortalitat, depenent de la especie estaria entre el 30 i el 40%. Porta el nom d’un riu, el Hantan, on els soldats nord-americans, de campanya a la guerra de Corea del la dècada dels 50 del segle passat, van ser primerament infectats per aquest virus fins aquell moment desconegut. Van arribar als 3000 afectats amb un 10% de mortalitat. Per més detalls d’un brot més recent mireu entrada 10. No hi ha vacuna aprovada pel seu ús a Europa o EEUU, ni cap tractament antiviral més enllà del suport a les constants vitals i l’administració de rivabirina a etapes inicials de la malaltia. Però sí s’administren preparats vacunals, a partir de cervells o cèl·lules de ronyó de rosegadors infectats, un cop inactivats, a Corea i Xina.

Els virus de la grip aviària, amb diferents soques (H5N1, H7N9…) que regularment arriben al compartiment humà causant cert pànic mediàtic; fins a cert punt està justificat ja que la taxa de mortalitat és de 70 per cent. Però, de fet, el risc de contraure la soca H5N1 – un dels més coneguts – és força baixa. Ara per ara la infecció únicament és possible, no diem probable, si s’està en contacte directe, i jo diria continuat, amb aus de corral o anàtids infectats. Això explica per què la majoria dels casos apareixen a Àsia, on les persones viuen sovint prop de les aus de corral (pollastres, ànecs). No hi ha una vacuna específica i el tractament és el suport de les constants vitals

El gènere Henipavirus engloba a tres membres anomenats Hendra virus (HeV, primera descripció, 1994), Nipah virus (NiV, primera descripció, 1999), i Cedar virus (CedPV, 2012), que encara compartir moltes semblances amb els dos primers, no infecta a animals de laboratori susceptible a l’infecció per paramixovirus, ni s’ha descrit en humans, i es considerat no perillós. Però pels altres dos virus, la letalitat és la seva senyera, amb taxes entre el 50 i el 100%. Hendra causa afectacions respiratòries, incloent hemorràgies i edemes als pulmons, o encefalitis i meningitis. Pel que fa a Nipah, anomenat així pel lloc on es va aïllar (mireu també entrada 10 sobre aquest tema) el primer brot que afecta a éssers humans i a porcs es caracteritza per símptomes encefalítics a humans i respiratoris als porcs. Brots epidèmics posteriors, però, han causat afectacions respiratòries en humans, incrementat la probabilitat de transmissió humà-humà i indicant l’existència de soques més perilloses, per transmissibles;  de fet està qualificat com potencial agent bioterrorista (agent categoria C, pel CDC). Encara que es creien virus australians o asiàtics, la descripció d’un virus a Ghana amb característiques semblants fa pensar que la zona endèmica inclouria també Africa. Hi ha vacunes pels cavalls (que també s’infecten i de fet són transmissors a l’esser humà) però no per aquests. Hi ha alguns tractaments experimentals post-exposició en assaig, no disponibles encara.

El virus de Lassa es va manifestar inicialment infectant una infermera a la ciutat de Lassa (Nigèria) i va ser oficialment descobert per un català, el doctor Jodi Casals-Ariet, l’any 1969. El virus es transmet per rosegadors (un ratolí, Mastomys natalensis). Es una malaltia endèmica, és a dir, que afecta de forma continuada una regió específica, en aquest cas l’Àfrica occidental, alternant períodes de baix afectació amb crisis o brots intensos. La febre de Lassa causa 5.000 morts anuals (d’uns 500.000 afectats); per tant una taxa del 1%. La taxa de mortalitat dels casos simptomàtics hospitalitzats, però, estaria entre el 15-20%, encara que alguns suggereixen que es troba al voltant del 50% als períodes epidèmics. Se suposa que el 15 per cent dels rosegadors a l’Àfrica occidental són portadors del virus, i per tant, susceptibles de transmetre’l. No hi ha vacuna però els tractaments immediats amb rivabirina semblen efectius.

El virus Junín (descobert el 1958) s’associa amb febre hemorràgica argentina. Les persones infectades amb el virus pateixen símptomes com conjuntivitis, petèquies i púrpures (petites hemorràgies dèrmiques) i ocasionalment sepsis, desembocant en alteracions greus dels sistema immune, vascular o neurològic. La taxa de mortalitat es troba entre el 20 i el 30%. El problema amb aquest virus, i amb altres, com el mateix Ebola, és que els símptomes inicials són prou indefinits o comuns com per que la malaltia sigui ben detectada en la primera instància. Els hostes naturals tornen a ser els rosegadors. La seva àrea d’afectació ha passat dels 15.000 km2 als 150.000 km2 en els darrers 50 anys. Hi ha vacuna disponible.

El virus de la febre de Crimea-Congo (descrit a 1944 a Crimea) és transmès per paparres (Hyaloma) i és una zoonosi que salta d’animals domèstics i silvestres a humans. És similar als virus Ebola i Marburg en la forma en què progressa als malalts. Durant els primers dies de la infecció, els pacients presenten petits botons hemorràgics a la cara, la boca i la faringe. La taxa de mortalitat està entre el 10 i el 30% a la segona setmana de l’aparició dels símptomes (en la majoria de brots). És una malaltia endèmica a tota Àfrica, els Balcans, l’Orient Mitjà i a bona part d’Asia (Pakistan, Iran, India…). Hi ha una vacuna d’antigen inactivat que s’administra a Bulgària i una desenvolupada per un equip turc encara pendent d’aprovació per la Food and Drug Administration (FDA). Respecte el tractament, suport de les constants vitals; a Turquia un tractament a partir de sèrum de pacients de CCHF ha demostrat un 90% d’efectivitat.

El virus Machupo (descrit per primer cop a Bolívia, 1962) s’associa amb febre hemorràgica boliviana, també coneguda com tifus negre; és una altra zoonosi. La infecció provoca febre alta, malestar general, mal de cap, dolor muscular (símptomes no gaire diferents a la malària). Les petèquies i el sagnat de nas i genives ve després quan la malaltia llisca cap a la fase hemorràgica. Progressa de forma similar al virus Junin i la seva taxa de mortalitat està entre el 5 i el 30%. Aquest virus sí que es pot transmetre ocasionalment d’humà a humà, però habitualment s’adquireix per contacte o inhalació de partícules de les femtes de rosegadors (el ratolí Calomys callosus). És considerat també com base per una potencial arma biològica. Sense vacuna ni tractament efectiu més enllà del suport de les constants vitals.

La febre del dengue és una amenaça constant, i la seva incidència s’ha incrementat fortament en les darreres dècades, des de la segona Guerra Mundial; actualment més de 110 països son endèmics a l’agent, un flavivirus o virus de la familia Flaviviridae, com el virus de la febre groga o el virus West Nile. La seva taxa de mortalitat està entre 1 i 5%; però és clarament inferior al 1% si es rep atenció adequada. Si estem planejant unes vacances al tròpic ja cal que ens informem bé. El dengue es transmès per mosquits, i afecta entre 50 i 100 milions de persones a l’any a destinacions turístiques populars, com Tailàndia i l’Índia, causant unes 25.000 morts anuals. Però és un problema més general ja que més de 2 mil milions de persones viuen en àrees que estan amenaçades per la febre del dengue, degut a l’urbanització creixent d’indrets feréstecs, impulsada pel creixement de la població, i l’escalfament global. No hi ha vacuna disponible, el tractament es basa en la rehidratació i el suport de les constants vitals.

El virus desconegut. Per aquest no tenim, evidentment ni vacuna ni tractament. Caldrà cercar-lo entre els disponibles i passaran mesos fins que disposem d’alguna eina diagnòstica específica i anys fins que tinguem eines terapèutiques (vacunes). És, aquest, el proper virus que ens vindrà, una conseqüència probable d’envair un nou entorn natural, forçar el contacte entre la natura, els animals (la majoria dels virus que hi ha a la llista són zoonótics) i les poblacions humanes, o com a conseqüència de l’escalfament global que canvia patrons de disseminació o localització de moltes especies, algunes d’elles que hostatgen virus que poden trobar nous hostes més predisposats.

Tot un equip de futbol, onze integrants d’un equip de malsons però també de reptes. En una propera entrada farem un nou llistat no en funció de la seva mortalitat i disponibilitat de contramesures si no de la afectació total (de l’efecte acumulat amb els anys).

Perquè aquesta, aquesta serà una altra història.

Comentaris virus-lents (89): Delivering on the cutting edge of the sword, Categoria A (i 2).

Reprenem allò que vam iniciar a l’entrada 84 fa unes setmanes. Quan enviem una mercaderia perillosa (unes mostres d’un virus de febre hemorràgica, com el virus de la febre de la vall del Rift o, perquè no, unes espores de Bacillus anthracis, o un cultiu de Mycobacterium tuberculosis o unes suspensions víriques de influenza aviar altament patògena) contraiem una sèrie d’obligacions. Aquest és un extrem que no està gens clar per molt personal de centres de recerca o  instituts. L’expedidor té la responsabilitat de classificar adequadament les substancies infeccioses; denominar-les correctament fent servir la corresponent designació oficial de transport i el corresponent numero (codificació) de les Nacions Unides (UN); empaquetar-les correctament; etiquetar el paquet corresponent amb les marques o etiquetes pertinents; generar tota la documentació de transport necessària pel transportista però també per les duanes (sí, a Europa encara cal passar duanes, particularment per materials infecciosos, sí tenim alguna cosa a declarar); contactar i acordar el transport amb el transportista i notificar al receptor de la sortida del paquet.

KIDS62AWR

Déu n’hi do, no? I semblava fàcil enviar un paquet. Si no ho fem tot correctament correm el risc que el nostre paquet no arribi o es retardi de tal manera que deixi de ser útil (per dubtes a nivell del propi transportista o bé per quedar bloquejat a duanes que demana més documentació o explicacions). Recordem que el material infecciós a més de perillosos acostuma a ser força “fràgil” o “inestable”. Si se’ns descongela el material infecciós transportat en neu carbònica (diòxid de carboni sec) la mostra pot perdre les seves qualitats en qüestió d’hores o dies.

Es distingeixen 9 classes de mercaderies perilloses. Pels que gestionem el transport de material infecciós ens interessen principalment tres classes: la classe 3 de inflamables; la classe 6 d’infecciosos i tòxics i la classe 9 la miscel·lània de mercaderies perilloses (on es troba la neu carbònica).

Si ens centrem en la classe 6 distingim entre toxines o tòxics (Divisió 6.1) i materials infecciosos (Divisió 6.2). El tema es complica perquè dintre de la divisió 6.2 distingim diferents categories; les substancies infeccioses (o materials de Categoria A); les substàncies biològiques (epp! també són infeccioses, descrites com materials de Categoria B); els productes biològics; els organismes i microorganismes modificats genèticament; els residus mèdics o clínics i els espècimens exemptes de pacients humans o animals…Ens agrada molt fer caixetes!!

InfectiousSymbol

Baixen un graó més al detalls i parlem de la categoria A, i deixem la categoria B per una futura entrada. La categoria A es definida com una substància infecciosa que en ser transportada, si es donés una exposició a l’exterior, seria capaç de causar incapacitat permanent, o malalties mortals o molt greus en essers humans o animals sans, immunocompetents. La designació oficial de transport d’aquestes substàncies quan afecten a humans (i animals) es Infectious substance, affecting humans, mentre que el seu codi de Nacions Unides és el UN2814. Si l’agent infecciós afecta exclusivament a animals, no pot infectar humans, la designació oficial de transport és Infectious substance, affecting animals, amb codi UN2900. Per cert no busqueu una lògica en els codis, no la té.

I de quines substàncies estem parlant (per variar en lloc de posar-vos el link us deixo el llistat). Doncs per Infectious substance, affecting humans, amb UN2814 tenim:

  • Bacillus anthracis (solament cultius)
  • Brucella abortus (solament cultius)
  • Brucella melitensis (solament cultius)
  • Brucella suis (solament cultius)
  • Burkholderia mallei – Pseudomonas mallei – Glanders (solament cultius)
  • Burkholderia pseudomalleiPseudomonas pseudomallei (solament cultius)
  • Chlamydia psittaci – avian strains (solament cultius)
  • Clostridium botulinum (solament cultius)
  • Coccidioides immitis (solament cultius)
  • Coxiella burnetii (solament cultius)
  • Crimean-Congo hemorrhagic fever virus
  • Dengue virus (solament cultius)
  • Eastern equine encephalitis virus (solament cultius)
  • Escherichia coli, verotoxigenic (solament cultius)
  • Ebola virus
  • Flexal virus
  • Francisella tularensis (solament cultius)
  • Guanarito virus
  • Hantaan virus
  • Hantavirus causing hemorrhagic fever with renal syndrome
  • Hendra virus
  • Hepatitis B virus (solament cultius)
  • Herpes B virus (solament cultius)
  • Human immunodeficiency virus (solament cultius)
  • Highly pathogenic avian influenza virus (solament cultius)
  • Japanese Encephalitis virus (solament cultius)
  • Junin virus
  • Kyasanur Forest disease virus
  • Lassa virus
  • Machupo virus
  • Marburg virus
  • Monkeypox virus
  • Mycobacterium tuberculosis (solament cultius)
  • Nipah virus
  • Omsk hemorrhagic fever virus
  • Poliovirus (solament cultius)
  • Rabies virus (solament cultius)
  • Rickettsia prowazekii (solament cultius); Rickettsia rickettsii (solament cultius)
  • Rift Valley fever virus (solament cultius)
  • Russian spring-summer encephalitis virus (solament cultius)
  • Sabia virus
  • Shigella dysenteriae type 1 (solament cultius)
  • Tick-borne encephalitis virus (solament cultius)
  • Variola virus
  • Venezuelan equine encephalitis virus (solament cultius)
  • West Nile virus (solament cultius)
  • Yellow fever virus (solament cultius)
  • Yersinia pestis (solament cultius)

I per Infectious substance, affecting animals, amb codi UN2900.

  • African swine fever virus (solament cultius)
  • Avian paramyxovirus Type 1–Velogenic Newcastle disease virus (solament cultius)
  • Classical swine fever virus (solament cultius)
  • Foot and mouth disease virus (solament cultius)
  • Lumpy skin disease virus (solament cultius)
  • Mycoplasma mycoides – Contagious bovine pleuropneumonia (solament cultius)
  • Peste des petits ruminants virus (solament cultius)
  • Rinderpest virus (solament cultius)
  • Sheep-pox virus (solament cultius)
  • Goatpox virus (solament cultius)
  • Swine vesicular disease virus (solament cultius)
  • Vesicular stomatitis virus (solament cultius)

Mireu que en molts casos es parla de “solament cultius”. Això vol dir que afecta a material propagat o crescut intencionadament, i per tant amb un alt títol, és a dir, moltíssimes partícules víriques per mil·lilitre. Per tant una mostra directa d’un animal o persona infectada no entraria en aquesta definició. Així una mostra d’una persona infectada amb Rift Valley fever virus no és tècnicament categoria A, però si fem créixer aquesta mostra en un sistema experimental, si l’enriquim, sí que passa a categoria A. Això no val per l’Ebola, i altres virus hemorràgics com Marburg, on tot material és categoria A, independentment el fem créixer o no. Una mica gris tot plegat, no?

Bones i llargues llistes, eh? Doncs no tant. No trobeu que manquen alguns virus? Llegiu la llista altre cop, i penseu. La solució…al final.

De tota manera a l’hora d’enviar el material es segueix la norma del triple embalatge o triple packaging. El primer conté el patogen; aquest envàs ha de ser rígid i hermètic. Aquest envàs ha de trobar-se dintre d’un segon envàs, també estanc (però no necessariament rígid) que ha de contenir també prou material absorbent per retenir el material infecciós si l’envàs primari es trenqués. Finalment l’envàs secundari es trobi dins d’un envàs terciari que ha de mostrar al seu exterior totes les identificacions i marcatges necessaris per poder saber que hi ha dins sense obrir el paquet. Aquests materials i embalatges porten uns marcatges específics que ens donen seguretat que han estat testats per aguantar caigudes lliures de 8-9 metres, fortes diferencies de pressió, gran estanquitat i altíssima resistència a les punxades o penetracions.

Category A parcel-3 containers

Les quantitats estan força limitades, a 50 g per enviament. I també hi ha una restricció a la mida del paquet que ha de mesurar més de 10 cm per cadascuna de les dimensions; això es fa per garantir que el paquet serà prou gran i per tant basant visible i localitzable.

I els virus us pregunteu? Heu vist al llistat el SARS Coronavirus (veure entrada 37)? I el MERS Coronavirus (veure entrades 7, 42 i 56)? El primer provocà un alerta molt seriosa entre el 2002 i el 2003 mentre el segon, amb una mortalitat per sobre del 30%, està ben actiu actualment a tota la Península Aràbiga. I això porta al lema final; que un material no estigui al llistat de categoria A no impedeix que el puguem classificar com a tal, si considerem que pot suposar un risc massa elevat. Això però, encareix molt el preu de l’enviament i la gestió dels permisos. Zones grises, zones grises.

Però aquesta, aquesta és una altra història.

Comentaris virus-lents (28): Per què «m’agraden» els virus?

 

Per què m’agraden els virus? Unes quantes raons desendreçades…

 

Els virus no són estàtics. Ells muten, es recombinen, es barregen (els seus àcids nucleics) per generar noves combinacions de gens i proteïnes que modifiquen o alteren les propietats inicials. És el cas, llargament conegut, de la infecció amb dos virus d’influenza diferents dins d’un mateix animal (el porc, les aus, nosaltres mateixos) que pot donar lloc a una estirp més virulenta senzillament per tornar a combinar les cartes (els genomes). Si jugues milers i milers de vegades amb una baralla de cartes és impossible que no et surti un pòquer i això ho fan els virus un dia rere altre a una escala que difícilment podem imaginar. I un pòquer no vol dir ser més patogen, si no ser més transmissible, més resistent a condicions ambientals, tenir més afinitat per receptors cel·lulars, envair nous teixits, etc.

 

Fa de mal dir però els virus tenen un costat fosc. I és de mal dir perquè ens col·loquem nosaltres al centre i els hi assignem el paper, perquè poden causar malalties greus. Des de la verola a la polio, la influença pandèmica i la SIDA (aquest un “arribista” de l’últim segle, un clar exemple de virus emergent), moltes de les més gran epidèmies afectant a humans han estat malalties víriques. Però els virus no solament causen malalties altament contagioses si no també estan involucrats en malalties cròniques sense un component infecciós obvi. S’assigna un 15% de la mortalitat mundial de càncer a infeccions víriques ocorregudes anys o fins i tot dècades abans. I els virus també intervenen en les malalties autoimmunes, en malalties neurològiques cròniques, en la síndrome de la fatiga crònica, fins i tot en les patologies de l’obesitat. Recentment s’ha establert un link epidemiològic entre la infecció pel adenovirus tipus 36 i la obesitat en humans, per exemple. I finalment, és molt probable que molts virus puguin disparar un procés de propagació en un hoste i abandonar-lo sense desar cap traça física (potser seria més correcte dir química) del seu genoma, un mecanisme de hit-and-run. En aquest cas l’univers dels virus podria ser inabastable.

 

Els virus no son “iguals. Contínuament es descobreixen nous virus que han eixamplat el seu rang des d’els circovirus minimalistes fins els virus gegants d’algunes amebes (veure entrada 1).

 

L’univers dels virus està en continua expansió; està incomplert. De fa anys se sap que en una gota d‘aigua marina o d’aigua residual es trobem milers, milions de virus o estructures virus-like amb proteïnes de funció desconeguda. L’inventari de virus que poden infectar a humans està també incomplert. Les últimes estimacions (per tècniques de seqüenciació) apunten a que els mamífers poden contenir centenars de milers de virus diferents, la immensa majoria dels quals no han estat realment aïllats i tenen una patogenicitat desconeguda. I dintre dels no mamífers, per exemple les aus, també porten virus potencialment molt perillosos com els vius influenza. I ja no parlem dels insectes. I tampoc esmentem els bacteris, que van estar abans que nosaltres i que ens persistiran, afectats per milers i milers de virus, que reben un nom més específic, els bacteriofags o “fags”.

 

Els virus ens demostrem que som part d’un tot més gran. No som un compartiment estanc, els éssers humans. Els virus que infecten animals també poden desbordar el seu compartiment, i afectar a humans, amb un efecte catastròfic sobre tot si el virus es transmet eficientment entre nosaltres. Així, amb una freqüència creixent nous agents vírics estan emergint; el virus de la sida o VIH, Ébola (entrades 17, 18, 23), Nipah, Hantavirus (entrada 10), els virus de la grip aviaria, el SARS Coronavirus, el MERS Coronavirus (aquest últim molt recent, de fa un parell d’anys, encara circumscrit a la Península Aràbiga, transmès pels camells i que està matant vora un 40% de les persones que resulten infectades, veure entrada 7). Per cert que MERS Coronavirus i virus Ebola o Marburg semblen tenir com a font original els ratpenats. Mereixeran una propera entrada per ells sols, els ratpenats.

 

Els virus treuen profit dels canvis, no es queixen. Per exemple, treuen profit del canvi climàtic, que ells no han provocat. L’escalfament global està expandint l’abast geogràfic d’una sèrie de artròpodes vectors i de retruc dels virus que poden hostatjar i propagar, expandint el vius dengue o el virus Chikungunya (entrades 8, 20, 26) cap a regions més temperades, les nostres, per cert.

 

La variabilitat, diversitat, velocitat de replicació, la seva capacitat d’amagar-se en reservoris (animals) donen fe de la robustessa, adaptabilitat, constància, plasticitat evolutiva dels virus. Un compendi de tot el que HOM voldria ser. O no?

 

 

Però aquesta, aquesta és una altra història.

Comentaris virus-lents (24): Les infeccions adquirides al laboratori, LAIs.

 

Les infeccions adquirides al laboratori (Laboratory adquired Infections, LAI) es defineixen com aquelles infeccions simptomàtiques o asimptomàtiques, que són contretes a través d’activitats de laboratori o per estar al laboratori, com a resultat del treball amb organismes infecciosos (Kimman et al., 2008; Sewell, 1995; Sulkin, 1961). En certa manera suposen el fracàs de les mesures de bioseguretat i biocontenció implantades, encara que això es degui a una deficient praxi d’un treballador (el que hauria fracassat és el nostre sistema d’entrenament i supervisió, llavors). Recordem que en un nombre molt alt d’accidents i incidents la “culpa” no és del treballador si no dels sistemes organitzatius, de formació i dels procediments implantats.

 

Es porten ja comptabilitzats prop de 5.000 casos amb unes 200 morts, però les LAIs estan disminuint des dels 90s del segle passat, possiblement per una millora en les instal•lacions i materials de contenció i també en els protocols de bioseguretat (Collins i Kennedy, 1999). A més s’ha observat una forta disminució dels casos deguts a la formació d’aerosols infecciosos, mentre es manté la incidència dels talls, punxades d’agulles i esquitxades; i un desplaçament dels principals patògens implicats passant de Brucella spp, Coxiella burnetti, Salmonella typhi i Francisella tularensis, seguit de Mycobacterium tuberculosi abans dels anys 80 a Mycobacterium tuberculosis, arbovirus, Coxiella burnetti, Hantavirus i Brucella spp, des dels anys 80 fins l’actualitat.

 

¡¡Però tot resulta més complex! Si el microorganisme existeix en el laboratori però no en la comunitat, podem estar relativament segurs del focus i etiquetar la infecció d’un treballador com LAI; però, si el microorganisme també està present en la comunitat, l’origen de la infecció ja no és tan fàcilment identificable. Per exemple, a Bèlgica, el 1995, els treballadors de laboratori van mostrar una incidència de tuberculosi 5,4 vegades superior a la població general (Ronveaux et al., 1997), valors que també s’han trobat en altres països (Àustria, Alemanya, Gran Bretanya, Japó) (Collins i Grange, 1999). El risc mitjà anual de seroconversió (mesurat per la prova de la tuberculina) és del 1,0% al Canadà (Menzies et al., 2003) en els treballadors de laboratori, molt més alta que la de la població general. Per altra banda a Turquia està molt estes el virus de febre hemorràgica Crimea-Congo (VFHCC, o CCHFV en anglès). Un treballador d’un centre de recerca o diagnòstic li podria costar molt de demostrar que la infecció que està patint l’ha agafada al centre i no fora d’ell, ja que la prevalença entre la població “normal” és alta.

 

No obstant això, no ens enganyem. No tenim una idea total del que està realment succeint ja que no hi ha requeriment legal de declaració de les LAIs amb excepció del Regne Unit; hem de comptar amb una forta subestimació des del moment que molts treballadors no ho fan per por de ser sancionats, i una bona part de les infeccions procedeixen de forma subclínica i només es poden traçar si es fan proves serològiques periòdiques als treballadors. Sumem a això que algunes infeccions requereixen d’un llarg període d’incubació abans de manifestar-se, amb la qual cosa es fa difícil enllaçar la malaltia amb l’incident del laboratori, si n’hi va haver.

 

¡¡Atenció a les LAIs associades amb la manipulació i treball amb animals d’experimentació! Hem de tenir present que sempre hi ha un risc de transmissió (infeccions zoonòtiques) a partir d’animals aparentment sans, no inoculats experimentalment. Un clar exemple el tenim en les prop de 230 infeccions per hantavirus (2/3 simptomàtiques, 1/3 asimptomàtiques) en investigadors que creien treballar amb rosegadors no infectats. L’adopció d’unes mesures mínimes; guants, indumentària de laboratori, protecció respiratòria, és altament recomanable. Aquestes mesures de bioseguretat passen a ser obligatòries quan es treballa amb animals inoculats experimentalment, sempre que els patògens inoculats siguin zoonòtics i s’hagi descrit transmissió aerògena.

 

Un incident que pot derivar en una LAI no s’ha d’amagar. Únicament amb confiança entre totes les parts es poden minoritzar els riscos i les conseqüències. Això no podem fer-ho entendre als animals d’experimentació però sí a les persones que hi treballen. En els dos casos, però, tindrem d’assumir un cert grau d’impredictibilitat.

 

Però aquesta, aquesta és definitivament una altra història.

 

 

  • Collins CH y Grange JM. 1999. Tuberculosis acquired in laboratories and necropsy rooms. Communicable Disease and Public Health 2(3): 161-167.
  • Collins CH y Kennedy DA. 1999. Laboratory acquired infections, 4th ed. London: Butterworth Heinemann.
  • Kimman TG, Smit E y Klein MR. 2008. Evidence-based biosafety: a review of the principles and effectiveness of microbiological containment measures. Clin Microbiol Rev 21: 403-425.
  • Menzies DA, Fanning A, Yuan L, Fitzgerald JM y Canadian Collaborative Group in Nocosomial Transmission of Tuberculosis. 2003. Factors associated with tuberculin conversion in Canadian microbiology and pathology workers. Am J Resp Crit Care Med 167: 599-602.
  • Ronveaux O, Jans B, Wanlin M y Uydebrouck M. 1997. Prevention of transmission of tuberculosis in hospitals; a survey of practices in Belgium, 1995. J Hosp Infect 37: 207-215.
  • Sewell DL. 1995. Laboratory-associated infections and biosafety. Clin Microbiol Rev 8: 389-405.
  • Sulkin SE. 1961. Laboratory acquired infections. Bacteriol Res 25(3):203-209.

Comentaris virus-lents (10): El virus Expòsit? No, «Sin Nombre».

Habitualment, a l’hora de posar una nom a una forma de vida, i els virus ho son, es pot recórrer a diverses vies: la malaltia que generen (el virus de la immunodeficiència humana, virus de la febre groga), el nom d’investigador (o investigadors) que l’aïllaren pel primer cop (per ex. Epstein-Barr) i el lloc geogràfic d’on sortí la mostra o l’individu primer diagnosticat (per ex. Virus de la febre de la vall del Rift, virus del Nilo Occidental, o virus Nàpols o virus Marburg). A ningú li agrada, però, que el racó on viu, la seva regió, o població quedi lligat a una malaltia, ja no diguem si és  greu o mortal.

Un clar exemple, resolt amb certa sorna, va succeir l’any 1993 a Nou Mèxic, en una àrea coneguda com a “Four Corners”, no gaire lluny del Gran Canyó del Colorado. Els països joves tenen fronteres marcades amb regla i als “Four Corners” conflueixen 4 estats (Arizona, Colorado, Nuevo México, i Utah). Allà, al 1993, es va alertar d’un brot epidèmic d’una síndrome pulmonar caracteritzada per febre, tos, mal de cap, letargia, falta d’alè, evolucionant ràpidament cap un edema pulmonar, mai descrit fins aquell moment. De fet, tenint en compte els símptomes inicials alguns la van anomenar la Navajo flu, la grip dels Navajos. Al poc temps s’identificà l’agent causal, un membre de la família Hantavirus, que com d’altres del mateix gènere te com a hoste natural un rosegador, en aquest cas, el Peromiscus maniculatus (o ratolí cérvol, deer mouse en anglès), que havia assolit un pic de superpoblació per la zona. El brot acabà amb 24 afectats, més de la meitat de la nació Navajo, i 12 morts (un 50% de letalitat!!). Arribat l’hora d’etiquetar al virus se li va dir “Four Corners”. Però aquí es començà a embolicar la troca; els indis navajos (que amb els Hopi, Ute i Zune tenen allà Reserves) no acceptaren la denominació i els empresaris turístics, els hi feren costat interessadament. Es cercà una segon alternativa “Muerto canyon”, un indret proper al lloc del primer aïllament del virus, pe`ro encara era massa “conegut”. Finalment, un funcionari, no sabem si resseguint el mapa amb un dit cercant alguna sortida, o potser travessat amb una rara clarividència humorística, va trobar a la regió un petit llogaret que rebia el nom de “Sin nombre” (tal com sona, sí), des de l’ època de la dominació espanyola. Aquest nom sí aconseguí una ràpida unanimitat.

I així fou com el primer Hantavirus aïllat al continent americà, provocant una patologia respiratòria desconeguda, el Hantavirus Pulmonary Syndrome (HPS), passà a anomenar-se virus Sin Nombre (o “Sin Nombre virus” en anglès). Aquest Hantavirus inaugurà l’estirpe de Hantavirus americans que generen unes malalties amb simptomatologies i desenllaços força diferents a les dels seus germans europeus.

Però aquesta, aquesta és una altra historia.

 

Font parcial: Tenorio, A. et al. (2009) Virus con denominación de origen; sin nombre, Nápoles, West Nile. Enferm. Infecc. Microbiol. Clin. 27:308-312.