comentarisviruslents

Aquest blog és una seguit de comentaris personals i probablement poc transferibles sobre ciència i política.

Archivos en la Categoría: malària

Comentaris virus-lents (197): Treballar amb artròpodes infectats a NBS3; ser picat o no ser picat? Vet aquí la qüestió-i 3.

 

En una instal·lació en la que es treballi amb vectors artròpodes (en el nostre cas mosquits) cal tenir clar el nivell de contenció a aplicar en cada moment. Us poso una taula que vaig presentar en una conferència (EBSA 2017, veure entrada a https://comentarisviruslents.org/2017/04/19/comentaris-virus-lents-192-conferencia-ebsa-to-be-or-not-to-be-safe/) fa uns dies i us l’explico.

 

ACL table-2

 

En un ACL1 (Arthropod Containment Level 1) hi maneguem els vectors autòctons ja establerts al nostre ambient (i per tant difícilment en tindrem nosaltres més a dins que els que hi han a fora) i aquells vectors exòtics pels que és inviable la seva supervivència exterior, sempre i quant no estiguin infectats amb cap patogen que afecti éssers humans o animals. La impossibilitat de supervivència exterior té a veure bàsicament amb consideracions climàtiques.

 

Al ACL2 es planteja la manipulació d’artròpodes autòctons o exòtics infectats amb microorganismes de grup de risc 2, o GR2, o mosquits modificats genèticament sempre i quan aquests modificacions siguin neutres o fins i tot negatives per paràmetres crítics del mosquit com viabilitat, rang d’hostes, fitness reproductiu, etc.

 

I els nivells ACL3 i ACL4 van marcats directament pel grup de risc del patogen manipulat. A un virus de GR3 li correspondria un NBS3, i en el cas que s’inoculi aquest virus en un mosquit, encara que aquest sigui autòcton, haurem de treballar sota un ACL3. I el mateix passaria amb un GR4, que requerirà al final un ACL4.

 

No parlarem extensament de la feina al meu centre, IRTA-CReSA, on es treballa en competència vectorial amb un seguit de virus de GR3 com són West Nile virus, Rift Valley Fever virus, Chikungunya, virus dengue i ara darrerament Zika (encara que aquest és un patogen GR2), per això millor aneu al blog específic del centre CReSA & the city, http://www.cresa.cat/blogs/sociedad/ però sí que acabarem aquest seguit d’entrades relacionades amb unes consideracions finals sobre la manipulació d’artròpodes infectats en condicions de contenció.

 

englisch_biostoffv-G-wordml02000001

 

Consideració 1: Les avaluacions de risc s’han de fer cas a cas, per a cada estudi. No serà el mateix treballar amb Aedes albopictus i Zika que amb Aedes aegypti i virus dengue, per exemple. I poso aquesta combinació de casos perquè és una mica excepcional. Expliquem-ho. Que és Aedes aegypti? Un vector exòtic al nostre territori, així que com a mínim li assignaríem un ACL2 (no podem assignar-li un ACL1 perquè si s’escapés aquest sí que té possibilitats d’establir-se a les nostres contrades). I l’apugem al ACL3 al treballar-hi en combinació amb el virus dengue, un virus exòtic i de GR3. Per contra, Aedes albopictus està completament establert a tot el Llevant de la península, per tant podria ser considerat un ACL1 per si sol; Zika està categoritzat com un virus de GR2, i nosaltres la combinació artròpode-virus la treballem a NBS3, si bé amb modificacions pel que fa als protocols i nombre i disposició d’EPIs, precisament per evitar que se’ns escapi un mosquit infectat amb Zika, que no està al nostre territori, i pugui establir un cicle autòcton de replicació amb els problemes de salut pública que això suposaria. A Brasil, on Zika ja està establert, aquests estudis es podrien fer en condicions ACL2.

 

Consideració 2: El treball amb artròpodes pot arribar a ser molt fi, i requerir molta precisió. Es fan disseccions de mosquits infectats, òbviament amb lupes i tècniques precises. Tots aquests treballs, com també l’obtenció de saliva de mosquits a partir de les seves glàndules salivars es veurien dificultats si carreguem els nostres treballadors d’un nombre d’EPIs excessius i en alguns casos inútils o si col·loquem massa barreres entre ells i el material amb el que treballen. Per tant, mantenint la bioseguretat, cal facilitar la feina a l’investigador, ja que si no, se li està portant a la vora de l’incident o l’accident. De fet, un element paradigmàtic quan es treballa a NBS3 és que sempre cal fer servir la CSB per a qualsevol treball experimental. Això per mosquits és bastant difícil si no impossible, ja que els mosquits anestesiats o adormits per a ser manipulats, si no estan continguts en capses o recipients, poden ser arrastrats pel corrent d’aire, el flux, de la pròpia CSB.

 

Consideració 3: Sempre que sigui possible, per exemple a les disseccions, treballar amb el mosquit mort i no amb el mosquit anestesiat (es fa deixant el mosquit sobre una placa que deixa anar CO2, per exemple). Treballar amb el primer garanteix més seguretat ja que no es pot despertar i aixecar el vol, amb el problema que això suposaria.

 

Consideració 4: Una màxima del control de riscos és si no eliminar-los sí reduir aquests el més ràpidament possible. Si es vol fer extraccions d’àcids nucleics per esbrinar si un patogen s’ha disseminat pel mosquit (recordeu que cal que el virus no solament sigui xuclat si no que ha de travessar el sistema digestiu del mosquit i disseminar-se per ell fins arribar a les glàndules salivars perquè el mosquit pugui infectar) res més fàcil i segur que agafar una fracció d’aquest i posar-lo en un tub que contingui un tampó de lisi comercial (són solucions d’agents caotròpics que desnaturalitzen i inactiven proteïnes i permeten recuperar després els àcids nucleics). Aquest tub encara que contingui una pota, o un cos de mosquit infectat, té la consideració de no infecciós o inactivat i es pot treballar en condicions de bioseguretat menys estrictes, i per tant es redueixen les probabilitats d’accidents amb material infecciós.

 

Consideració 5: Seguint amb la màxima de control de riscos anterior, l’accés a les àrees experimentals d’estudis de competència vectorial està fortament restringida. Només el personal que hi treballa i personal de gestió o control d’instal·lació hi té accés (no els serveis de neteja, no els serveis de manteniment extern o de calibratge d’equips), que sap el que ha de fer en cas d’incidents o accidents.

 

Consideració 6: Expect the unexpected. Sempre cal tenir plans de contingència. En el món dels artròpodes això es fa amb dues eines molt senzilles però efectives. Una, el comptatge dels subjectes experimentals. Als laboratoris d’artròpodes, durant els processos experimentals es compten els animals contínuament, al començament i al final de cada dia, i els comptatges han de coincidir. Això garanteix que no hi ha cap escapament. Si el comptatge no és idèntic s’ha de rastrejar, trobar i eliminar l’espècimen que s’ha alliberat. Això pot semblar difícil però és aquí on entra la segona eina. Entre l’artròpode, infectat o no, i l’exterior s’han posat prèviament una sèrie de barreres per dificultar la seva sortida i facilitar que pugui ser trobat i eliminat. Els panels de les habitacions de treball són llisos i clars (blancs); hi ha sistemes (un o més d’un) de dues portes commutades, que no es poden obrir alhora, on la gent que transita està estones curtes confirmant visualment l’absència d’espècimens; el personal es sotmet com a mínim a una dutxa de sortida (pot ser d’aigua però també d’aire, sols que en aquest cas és un corrent molt potent d’aire) en un sistema de doble porta també commutada per arrastrar contaminants; en cadascun d’aquest compartiments entre barreres hi ha sistemes de captura, trampes de llum o de CO2, trampes adhesives, etc. Tot això, que superposat pot suposar de 5 a 7 ó 8 barreres que ha de travessar l’insecte, fa gairebé impossible el seu escapament (i recordem que el cicle biològic del mosquit fa que aquesta amenaça s’estengui per un període d’uns quants dies, unes poques setmanes).

 

I amb això acabem aquest curt passeig per la bioseguretat i els seus nivells, la biocontenció, i el maneig d’artròpodes infectats. Però com ja hem dit cada cas experimental serà sempre un cas nou, un cas diferent.

 

Risk assessment triad

Però aquestes, aquestes són altres històries.

Comentaris virus-lents (196): Treballar amb artròpodes infectats a NBS3; ser picat o no ser picat? Vet aquí la qüestió-2.

 

Com dèiem a l’entrada anterior, i resumint d’una entrada encara més prèvia (enllaç https://comentarisviruslents.org/2014/08/01/comentaris-virus-lents-29-grups-de-risc-nivells-de-bioseguretat-i-avaluacio-de-risc/) i explicant-ho d’un altra manera, distingim 4 nivells de bioseguretat (o biosafety levels); 2 són nivells molt habituals i els altres dos són nivell d’alta contenció: high containment, alta contenció, o nivell de bioseguretat 3, NBS3,  i màxima contenció (nivell de bioseguretat 4 o Biosafety Level 4, BSL4).

 

englisch_biostoffv-G-wordml02000001

 

Tot comença amb el nivell de bioseguretat 1. Per aquest només cal unes mínimes proteccions com una bata de laboratori correctament portada, un parell de guants, i una bona pràctica microbiològica (que entre altres coses exigeix un rentat de mans sovint, sempre que es canvia d’activitat i en acabar aquesta). Aquell nivell és fonamental perquè la gent que no sàpiga treballar realment bé en aquest nivell portarà vicis i males pràctiques cap els nivells superiors i un element de protecció individual (EPI) mal portat en nivells de bioseguretat superiors no protegirà d’una infecció.

 

Al nivell de bioseguretat 2, on manegem patògens que poden provocar malalties, no massa greus, en éssers humans, pels que tenim vacunes i tractaments, i que tenen una baixa probabilitat de transmissió als treballadors, i a la comunitat, sí s’implementen ja barreres primàries. És un nivell en el que es comença a filtrar l’entrada de personal al laboratori, s’adverteix del perill biològic per rètols i senyalitzacions. En aquest nivell el personal ja treballa amb bata de laboratori i guants per a totes les activitats, i si és necessari protecció respiratòria en forma de mascaretes, i fa servir un element de barrera primària com són les cabines de seguretat biològica (CSB) uns espais que, per un flux unidireccional d’aire filtrat, poden contenir els potencials aerosols de mostres i cultius perquè no afectin el treballador. A més, els residus generats ja són sotmesos a tractaments d’esterilització per autoclau.

 

Al nivell de bioseguretat 3, ja un nivell de alta contenció, les mesures s’extremen però no tant pel treballador si no per protegir al medi ambient i la comunitat. L’accés ja està restringit per lectors biomètrics, o digitals, o claus. El personal treballa amb roba específica que es descontamina dins la instal·lació prèviament a la seva bugada. El treball en CSB és obligatori per a tot mostra i cultiu (no es pot treballar en bancada amb mostra no inactivada). Els EPI són més abundants (l’ús de protecció respiratòria és més freqüent) i és norma a molts laboratoris portar doble guant (en alguns casos, sobre tot en treballs amb animals infectats, triple guant), per tenir sempre una capa segura si l’externa es veu afectada/contaminada. El salt, però, es dona a nivell de barreres secundàries, o d’instal·lació: pressió negativa en tot el laboratori, que genera una corrent oposada a l’escapament de microorganismes; dobles portes commutades a entrada i sortida de personal; segellament de totes les fissures o penetracions per aïllar el màxim el laboratori (el laboratori no té finestres o les té segellades a la paret, sense fissures per l’aire); tot l’aire és filtrat de forma absoluta prèviament a la seva sortida del laboratori; tots els residus són autoclavats, com a mínim un cop, abans de sortir de la instal·lació en autoclaus que estan dins la instal·lació; tots els efluents (aigua de piques, medis de cultiu, aigües de dutxes de personal, perquè el personal habitualment es dutxa a la seva sortida per garantir que si porta res patogen quedi arrastrat per l’aigua altre cop dins la instal·lació) són també inactivats químicament o tèrmicament, etc.

 

El nivell de bioseguretat 4, és on es manipulen patògens que provoquen generalment una greu o molt greu malaltia humana o animal i que es transmeten fàcilment d’una persona (o animal) a una altra, directament o indirectament. Per ells no hi ha disponibles tractaments i mesures preventives eficaces. Aquest NBS4 (o BSL4 en anglès) és el nivell de màxima contenció i en ell no s’incrementen en excés les barreres secundàries, aquelles que protegeixen a la comunitat i al medi ambient, que ja s’havien millorat força a NBS3;  el que es fa es assegurar el seu funcionament afegint més controls o sistemes redundants que fan que si falla un sistema en salti un altre al seu rescat, i es dona un pas més aïllant al treballador de les mostres ja que se’l fa treballar en un tipus especial de CSB, les de classe III, i/o se’l fica dins de vestits segellats de pressió positiva (per evitar entrada del patogen) i amb subministrament d’aire net des de l’exterior mitjançant mànega, la qual cosa els confereix un aspecte una mica astronàutic. A més quant surten de l’instal·lació el personal ha de rebre una dutxa química mentre encara porta el vestit posat, que arrastra i inactiva qualsevol patogen que hagi quedat adherit en la seva superfície.

 

Però, com portem aquest nivells de bioseguretat al camp dels artròpodes, i essent més específics, al camp dels mosquits vectors de malalties i als estudis de la seva competència vectorial (per saber més de competència vectorial aneu a l’entrada https://comentarisviruslents.org/2015/12/27/comentaris-virus-lents-146-competencia-vectorial-o-quan-la-competencia-ens-fibla-de-veritat/)? Perquè els mosquits tenen ales i volen, i ja us dic jo que la pressió negativa dels laboratoris no impedirien el seu escapament. La pressió negativa als laboratoris de microbiologia s’ha dissenyat per fer front a elements passius, pols i micro-gotes, aerosols, que es mouran sempre en la direcció del flux d’aire, fet aquest que no podem aplicar als mosquits.

 

Doncs bé, totes les classificacions dels nivells de contenció dels mosquits per fer estudis de competència vectorial, com els contenim quan estiguin experimentalment infectats, apliquen els nivells de bioseguretat microbiològics. El missatge és que la patogenicitat d’un agent infecciós (virus, bacteri, paràsit, etc.) ha de ser la consideració més important a l’hora d’avaluar el risc d’un vector artròpode infectat; com més greu és la malaltia microbiològica vectorizada per l’artròpode més alt és el risc i la seva necessitat de contenció i com la malaltia és causada pel microbi els nivells a aplicar són els microbiològics. Ja veurem però, que es fan adaptacions.

 

a_aegypti_0--620x349

Però també caldria tenir en compte les consideracions ecològiques; què passa si treballem amb un vector exòtic, un mosquit, potencial transmissor de malalties, encara que la nostra colònia no estigui infectada, si aquest s’escapa a l’exterior, un exterior amb un clima que afavoriria el seu establiment i propagació? Això també exigeix preocupació i un cert nivell de contenció, no?

Doncs això, que continuarà.

 

Però aquesta, aquesta és una altra història.

Comentaris virus-lents (195): Treballar amb artròpodes infectats a NBS3; ser picat o no ser picat? Vet aquí la qüestió-1.

 

Les malalties infeccioses transmeses per artròpodes poden ser molt greus, incapacitant per mesos o anys, o ser mortals, estan molt esteses i s’estan expandint.

 

Actualment ja representen més del 17% de totes les malalties infeccioses, causant més d’1 milió de morts anualment. Més de 2.500 milions de persones en més de 100 països estan en risc de contraure el dengue. La malària causa més de 400.000 morts a l’any a tot el món, la majoria d’ells nens menors de 5 anys. Altres malalties, com la malaltia de Chagas, la leishmaniosi i l’esquistosomiasi afecta centenars de milions de persones a tot el món. Chikungunya ha passat com una onada sobre el Carib i més recentment Zika des de Brasil també ha passat el corró sobre tota Sud-Amèrica i Centre-Amèrica i Carib.

 

a_aegypti_0--620x349

I a més, com a conseqüència de l’escalfament global que desplaça els vectors cap a zones més septentrionals, com la conca mediterrània i més al nord, aquestes malalties truquen ja a la nostra porta.

 

Independentment del seu rang geogràfic creixent cal fer recerca controlada amb els patògens que porten aquests vectors (mosquits, tàvecs, paparres, puces, etc.) i per això calen instal·lacions d’alta seguretat biològica que efectivament continguin tant el patogen com el mosquit perquè els productes dels experiments, mosquits infectats, no arribin a la comunitat, a casa teva.

 

Quan manipulen un mosquit, o una colònia de mosquits podem fer una avaluació directa o indirecta del risc. L’avaluació directa és fàcil, em picarà?, no em picarà?, m’infestarà l’habitació o l’edifici?. Aquesta avaluació empal·lideix quan pensem en els efectes indirectes, que es basen en la morbilitat i mortalitat degudes als patògens que aquests mosquits portarien al seu interior, i que poden ser letals per humans…i animals. És aquesta avaluació indirecta la que liderarà les nostres aproximacions a les barreres de biocontenció i procediments a implementar.

 

L’avaluació del risc per binomis vector-patogen (ja sigui virus, bacteri o paràsit) és encara molt qualitativa perquè molts dels paràmetres no tenen encara quantificació possible i en altres casos la informació és senzillament inexistent. Això determina una tensió entre una aproximació conservativa (pensar que tots els elements que intervenen són altament perillosos) i una judici subjectiu més benvolent. No tenim ara mateix un algoritme que puguem alimentar amb dades i que ens doni un valor o unes recomanacions concretes.

 

Abans de començar a treballar amb el binomi vector-patogen ens hem d’asseure i plantejar-nos algunes qüestions.

  • Està el vector artròpode amb el que volem treballar ja present al nostre territori, o és exòtic? No seria el mateix treballar amb Aedes albopictus (mosquit tigre) del que pot haver més en alguns jardins que dintre d’un box experimental que amb Aedes aegypti, espècie exòtica a Catalunya (s bé fa menys d’un segle no diríem el mateix).

  • Si aquest vector és exòtic, és probable que s’estableixi al territori temporal o permanentment si se’ns escapés?

  • Els agents patògens amb els que treballarem també estan presents al territori o són exòtics?

  • Si els agents amb els que treballem són zoonótics, el reservori animal està present al territori? És a dir, si se’ns escapa el mosquit infectat aquest trobarà un animal susceptible que en ser picat propagarà el virus i permetrà que altres mosquits en alimentar-se iniciïn de nou el cicle?

  • Podríem controlar o eradicar l’artròpode per mètodes tradicionals si s’escapés?

  • Poden emprar estirps de mosquits que tinguin alguna discapacitat fisiològica que limiti la seva viabilitat si s’escapen?

 

Com veieu mirem molt, en aquest a primera aproximació, cap enfora. Tot va de que passaria si l’artròpode s’escapés, fins i tot artròpodes no infectats, perquè no volem que una nova espècie s’implanti en un territori, nova espècie que podria ser la pista d’aterratge per a la futura transmissió de nous patògens, aquest no introduïts experimentalment o encara no presents naturalment.

 

Això fa sorgir naturalment la següent pregunta, cóm ho fem per prevenir el seu escapament i aquí cal dir que no hi ha cap regla general o una aproximació universal als nivells de contenció per artròpodes. Agafem en préstec els nivells de bioseguretat i els mesures i protocols marcats pels patògens i el seu nivell de risc (mireu entrada 29, https://comentarisviruslents.org/2014/08/01/comentaris-virus-lents-29-grups-de-risc-nivells-de-bioseguretat-i-avaluacio-de-risc/) i els adaptem sempre amb un ull en les conseqüències ecològiques…Si se’ns escapa un vector, no infectat, que pot transmetre la malaltia X en una zona endèmica de aquesta malaltia X estem afegint un risc suplementari d’incrementar la transmissió que no es dona si aquest escapament es fa en una regió on aquesta malaltia X no existeix, per exemple.

 

L’avaluació del risc cerca reduir, en el millor cas eliminar, el risc. I això es pot assolir a quatre nivells:

  • Eliminant les exposicions potencials (si el nostre objectiu es treballar amb un binomi vector-patògens això no ho podrem fer però si podem minimitzar l’exposició; emprant els mínims volums de patògens o mosquits, reduint el nombre de persones involucrades, etc.)

  • Actuant sobre els controls d’enginyeria, control de processos, o sobre la tecnologia de la instal·lació (pressions negatives, dutxes de sortida del personal, autoclaus murals on site, sistemes de doble comporta commutada, inactivació química de tots el efluents, filtració HEPA de l’aire de sortida), sense que es mal interpreti, en alguns moments matant mosques a canonades.

  • A nivell de protocols i procediments de treball: fent procediments clars i segurs, treball en equip, eliminat objectes punxants sempre que sigui possible…poques coses hi ha més perilloses que llancetes o altres estris punxants en un laboratori on es treballi amb mosquits i virus, pel perill de transmissió percutània. Un altra activitat que minimitza el risc seria fer experiments amb mosquits en època hivernal quan els artròpodes escapats serien anihilats per les condicions ambientals adverses en hores o dies…però dissortament molts dels mosquits amb les que treballem entren en diapausa, en un període d’inactivitat hivernal que no fa possible aquesta aproximació.

  • Emprant equips de protecció individual, que protegeixen el treballador però l’abús dels quals pot fer tan feixuga la feina que condueixi o ajudi a que es donin accidents per inseguretat.

 

Combinant mesures d’aquests quatre nivells de control de risc és com es defineixen els nivells de bioseguretat, també quatre, establerts a diferents guies; la guia de la Organització Mundial de la Salut (OMS), la guia del Center for Disease Control and Prevention, CDC (titulada Biosafety in Microbiological and Biomedical Laboratories o BMBL), la guia del govern canadenc (Canadian Biosafety Standard (CBS) Second Edition a https://www.canada.ca/en/public-health/services/canadian-biosafety-standards-guidelines/second-edition.html), etc. Com veieu, cap estàndard universal, encara que tots prou semblants, per fer-se cadascú un vestit una mica a mida. Continuarà.

 

Perquè aquesta, aquesta és una altra història.

Comentaris virus-lents (194): Molt breu «història» d’algunes malalties vectorials a Catalunya.

Les malalties vectorials no foren gens desconegudes a Catalunya en temps històrics i no tan llunyans com els segles XVIII, XIX i XX. Gèneres de mosquits que han estat i estan involucrats en la transmissió de malalties com Chikungunya, dengue, i febre groga, i malària, com són espècies dels gèneres Culex, Aedes i Anopheles estan ara mateix entre nosaltres. Alguns són autòctons (una categoria canviant, perquè una espècie introduïda amb el pas dels anys esdevé autòctona si no es eradicada) però altres han estat introduïts recentment com Aedes albopictus. El que potser molta gent no sap és que Aedes aegypti, el vector transmissor de la febre groga va ser introduït fa, com a mínim, 200 anys i no ens em vam desempallegar d’ell fins fa uns 60 anys.

 

La malària, la febre groga i el dengue formen part de la historia passada, però no massa llunyana, del nostre país. Espanya, que va reportar el darrer cas l’any 1961, va ser declarada lliure de paludisme l’any 1964, per la Organització Mundial de la Salut (OMS)  però cal recordar que fa un segle, a començaments del s. XX, la malària encara era responsable de la mort de 25 persones de cada 100.000 habitants. Un factor gens menyspreable de mortalitat; representava prop del 8% de la mortalitat total. I un dels llocs on es feu de forma més sistemàtica, extensa i intensa aquesta campanya d’eradicació, ja que el problema era greu, fou a Catalunya en la època de la Mancomunitat.

 

A Catalunya, en 1722, diversos pobles de les Terres de Ponent (comarques de Segrià, Noguera, Garrigues) la majoria en el curs inferior del Segre, van ser víctimes del paludisme. A l’estiu de 1724, a Capafonts, un llogaret de les Muntanyes de Prades (Baix Camp), es van registrar també els seus efectes. Montblanc, també afectada, va actuar com a focus d’expansió per la Conca de Barberà. Després de passar per altres pobles de Tarragona (Vimbodí i l’Espluga de Francolí, Rojals i Guàrdia dels Prats) es va manifestar a finals d’agost de 1726 a Barberà (Barcelona) i Ollers (Girona). A principis de 1727 diferents pobles del Camp de Tarragona (entre altres Riudoms, les Borges del Camp, Mont-roig, Cambrils, Vila-seca, la Canonja) es veieren afectats per tercianes, comptabilitzant-se 750 morts. Finalment, en 1729 s’esvaeix l’epidèmia.

 

Altres poblacions afectades anys més tard, van ser: Torà (Cervera) en 1768-1769, Sant Feliu de Guíxols (Girona) el 1769, Manresa i rodalies a 1771, Segarra, Calaf i Cervera en 1776, Agramunt i Vilagrassa en 1781, Verdú en 1782, Balaguer en 1781-1783 i el Pla d’Urgell en 1782-1783. Aquests episodis de finals del segle XVIII, que coincidien amb un pic d’incidència general a la Península (va resultar també greument afectada la Manxa), van causar la ruïna general d’aquestes zones, amb un gran nombre d’afectats; per exemple, fins a 200 malalts a Agramunt el any 1785.

 

Ja al segle XIX, a l’Empordà (Girona), s’inicien successius brots els anys 1802, 1804, 1808, 1812, 1820, 1827, 1830, 1834, 1835, 1836, 1844 i 1848, mentre que el 1898, es documenta un brot a Barcelona.

 

S’apunta també al paludisme com la causa de greus estralls en l’exèrcit espanyol acampat a Pontellà (Rosselló) davant l’estany de Nils, lloc des del qual la malaltia, portada pels soldats, es va estendre a les poblacions veïnes, acabant amb les vides d’entre 30.000 i 35.000 persones, segons diverses fonts.

 

En quant als detonants de les epidèmies, els lògics, sempre implicant l’aigua. Un dels detonants va ser el cultiu de l’arròs; la majoria dels episodis terciaris registrats el 1720, 1724 i 1727, són conseqüència de l’existència d’arrossars, localitzats, fonamentalment, a la zona del Camp de Tarragona, l’Empordà i Lleida. Una altra causa van ser les aigües estancades procedents de fonts i surgències, les quals, en no tenir sortida o curs suficient, afavorien l’aparició d’estanys, brous de cultiu per a la malària. Com exemple, tenim el cas de Capafonts, que a l’estiu de 1724 va començar a registrar els efectes del paludisme al temps de l’estancament de les aigües d’una font natural que brollava a la seva rodalia.

 

I del dengue, del dengue urbà, també hi ha força anotacions a la conca mediterrània, des de les darreries del segle XVIII fins ben entrat el segle XX (la darrera epidèmia greu a Atenes, 1927-1928). És evident que el dengue ens degué visitar en aquestes èpoques però no he trobat gaire dades públiques al respecte.

 

Pel que respecta a la febre groga, a Catalunya, ni hagueren històricament ni hi ha ara primats, hostes o reservoris naturals del virus, que permetin un cicle selvàtic d’aquesta febre i per tant el únic cicle possible és l’urbà, aquell que tanca en un cicle viciós éssers humans i el vector, en aquest cas Aedes aegypti. Aedes aegypti va ser introduït a la Mediterrània a començaments del segle XVIII, a través d’una xarxa de ports dins els quals es trobava Barcelona. Les condicions ambientals portaren a que aquest vector s’estengués des del Golf de Cadis fins el golf de Roses. S’apunta que el cicle era alimentat a causa de les colònies d’ultramar, que facilitaven l’arribada de casos importats…i de mosquits.

 

El primer brot de febre groga documentat a Espanya va ser a 1701. Una sola cadena de brots de febre groga entre 1800 i 1803 es va cobrar més de 60.000 vides a Cadis, Sevilla i Jerez. Es considera que més de 300.000 persones van morir a causa de la febre groga a Espanya durant el segle XIX, dels quals menys d’una desena part foren catalans.

 

La febre groga va campar entre els catalans fins finals de la dècada del 1870 (la darrer epidèmia registrada va afectar Alacant, Barcelona i Mallorca, els nostres Països Catalans). L’episodi més fort, tanmateix va succeir a Barcelona, amb l’epidèmia del 1821 que causà entre cinc mil i vint mil morts!

 

El brot de febre groga va seguir un patró típic: un vaixell procedent de Cuba va introduir la malaltia en els molls del port; l’epidèmia va esclatar inicialment als suburbis pobres al començament de l’estiu, i, finalment, arribà el centre de la ciutat; comença a fer-se intens durant l’agost moment en el que els ciutadans més benestants van posar terra pel mig i van anar-se’n a les poblacions dels voltants com Vilafranca. Les autoritats van llavors aïllar la ciutat; tancaren les porten els primers dies de setembre (la majoria dels morts es produïren entre setembre i octubre). Enfonsaren els vaixells contaminats o que es consideraven responsables del brot i ordenaren als metges i als boticaris que quedessin a la ciutat en companyia de policies i 3000 soldats (la meitat dels quals moriren) que intentaven fer front als disturbis i el pillatge. Gent sense recursos que escaparen al camp foren foragitats pels camperols i pagesos armats i en tornar a Barcelona es trobaren que tampoc podien entrar; molts d’ells, sense recursos, moriren de set o gana. Dins la ciutat el panorama no era millor i va haver-se d’esperar a mitjans octubre que, gràcies als fons proporcionats per dos homes de negocis, la gent fos evacuada a cabanes temporals fora de les muralles. Per novembre l’epidèmia declinà i el port de Barcelona reobrí el dia de Nadal.

Febre groga làpida cementiri Poble Nou

Imatge de: http://iberianature.com/barcelona/2009/05/14/yellow-fever-in-barcelona/

Se suposa, com indicavem més a dalt, que un màxim de 20.000 habitants van morir a causa de la plaga, el que seria una sisena part de la població total de la ciutat ,estimada en 120.000 persones. Barcelona, tota la ciutat, va entrar en quarantena i el govern en ple es va traslladar a Esparraguera, que esdevingué “capital” durant tres mesos.

 

Madrid tancà també els seus punts d’accés als catalans i exhortà els seus ciutadans a denunciar tot català que hagués entrat fraudulentament a la ciutat; fins i tot es suspengueren els braus.

 

A tall d’exemple de la seriositat del tema a nivell extra-estatal només cal dir que les autoritats franceses van prendre ràpidament mesures d’emergència a les fronteres terrestres i marítimes mitjançant el bloqueig dels ports francesos a naus catalanes i la quarentena obligada a vaixells de la resta de la península i la definició d’una línia de quarantena terrestre a la frontera pirinenca controlada per un exèrcit de 15.000 soldats així com l’enviament d’un equip mèdic francès que incloïa sis metges i dues monges per prestar assistència (que segons diuen les cròniques no van fer res rellevant). Molt després que l’epidèmia s’havia retirat, la línia de quarantena pirinenca es va mantenir per les autoritats franceses per un propòsit polític ocult: Paris desitjava contenir liberalisme espanyol, una «plaga revolucionària».

 

L’últim brot de febre groga a Barcelona el 1870 també va ser portada per un vaixell de vapor, el Maria, des de Cuba. Es van enregistrar un mínim de 1.264 defuncions identificades als registres parroquials com relacionades amb el brot. La taxa de mortalitat per febre groga va ser de 549,7 per 100,000 habitants (Canela et al., 2009); la població total a Barcelona en aquella època estava per sobre de les 220.000 ànimes. Si donem per bona una taxa de mortalitat entre els infectats amb simptomatologia clínica d’entre el 10 i el 50%, la població afectada estaria entre 2.500 i 12.350 persones (no més enllà d’un 5,0% de la població total) amb un impacte força menor que l’epidèmia de 1821. La distribució temporal de les morts permeteren observar dues onades, amb pics a finals de setembre i a les darreries d’octubre; els darrers mort ocorregueren al desembre (recordeu que els vectors “desapareixen” amb l’hivern). La distribució de les defuncions per barris va ser clarament desigual amb una alta afectació als barris de la Barceloneta, en la Ribera (sobre tot la primera onada) i una segona onada on s’arribà a altres barris més «cèntrics». Fins i tot, a la mateixa Barceloneta també s’observà un gradient amb més morts en els carrers adjacents al port que en els més llunyans. Dos detalls responsables de l’epidèmia: el primer, que encara que s’havien donat diverses morts al vaixell Maria en el seu viatge cap a Barcelona no es van inspeccionar  ni càrrega ni passatgers i es permeté el seu desembarcament i segon, que en aquella època, a la majoria de les cases, per emmagatzemar aigua es feien servir contenidors d’argila o metàl·lics molt cops mal tapats o tancats generant hàbitats per a la reproducció dels mosquits, dos factors aquestos difícils de repetir-se actualment.

 

A Catalunya com ja hem indicat no hi ha Aedes aegypti autòcton, que es va eradicar, però sí hi ha un parent molt proper, Aedes albopictus, que també és competent en la transmissió de la febre groga.

 

Sortosament hi ha vacuna efectiva front la febre groga (una vacuna història, la 17D, de just abans de la II Guerra Mundial) per la que el seu descobridor Max Theiler, que treballava a la Rockefeller Foundation rebé el Premi Nobel de Medicina l’any 1951, però seria extremadament convenient evitar la introducció del vector mundialment competent, Aedes aegypti, i que algun cas importat doni lloc a una transmissió secundària, generant l’inici d’un cicle urbà dins de Catalunya, que fora el primer pas perquè la malaltia esdevingués endèmica altre cop. El mateix aplicaria al dengue (per la qual hi ha una única vacuna llicenciada, la Dengvaxia® (CYD-TDV), desenvolupada per Sanofi Pasteur, que confereix una bona protecció, però no total, i que demana l’administració de tres dosis espaiades 6 mesos, i al paludisme, pel que no hi ha cap preparat llicenciat, comercial, encara que sí hi ha un candidat molt avançat, la vacuna RTS,S/AS01, desenvolupada per GlaxoSmithKline Biologicals (GSK) i la PATH Malaria Vaccine Initiative (MVI), amb el suport de la Fundació Bill & Melinda Gates i la col·laboració d’un seguit de centres i institucions entre les que es troba ISGlobal-CRESIB i que també dona protecció parcial però no total. Aquesta vacuna, però, és específica per administrar a infants de zones endèmiques, per tant no s’administraria a turistes, amb l’agreujant que en aquests casos no tenim una vacuna senzilla d’administrar ni totalment i permanentment efectiva.

 

Però aquesta, aquesta és una altra història.

 

 

Bibliografia emprada (llistat no exhaustiu)

  • Bernabeu Mestre, I 2000. Epidèmia i control social:a propòsit de les campanyes antipalúdiques a la Catalunya contemporània (1902-1925). A: Batlló, J., Fuente P. De la, Puig, R. (d) V Trobades d’Historia de la Ciència i de la Tècnica. Barcelona. Societat Catalana d’Historia de la Ciència i de la Tècnica, p37-41.
  • Canela, J., Pallarés, M.R., Abós, R., Nebot, C., Lawrence, R.S. 2009. A mortality study of the last outbreak of yellow fever in Barcelona City (Spain) in 1870.  Gac Sanit. 23(4):295–299.
  • Enllaç: http://www.gacetasanitaria.org/en/linkresolver/a-mortality-study-last-outbreak/S0213911108000642/
  • Castejón, G. 2015. Paludismo en España en los siglos XVIII-XIX: Distribución espacial y erradicación. En: Análisis espacial y representación geográfica: innovación y aplicación de: de la Riva, J., Ibarra, P., Montorio, R., Rodrigues, M. (Eds.) Universidad de Zaragoza-AGE. ISBN: 978-84-92522-95-8, pàgines: 69-78.
  • Chastel C. 1999. The «plague» of Barcelona. Yellow fever epidemic of 1821. Bull Soc Pathol Exot. Dec;92(5 Pt 2):405-407. (en francés)
  • Moll, I. 2002. Epidemiologia des de l’Edat Mitjana fins l’actualitat. Revista Catalana d’Historia de la Medicina i de la Ciència, vol 37, p 21-54.

 

Alguna lectura addicional:

Comentaris virus-lents (177): Ultrasons i mosquits; altra «silver bullet» que és de plom.

La repulsió dels mosquits pels ultrasons és un sense sentit. No hi ha cap evidència científica que indiqui que això és verídic…

 

Què són els ultrasons? Són aquells sons, aquelles ones sòniques que tenen una freqüència per sobre del rang de detecció dels essers humans…que varia amb l’edat, i es va fent més estret, és a dir, amb els anys deixem de sentir freqüències que abans sentiem. S’accepta que aquestes ones començarien sobre els 15-20 Hz. Doncs bé, les freqüències de 15 Hz-20 poden ser captades per persones joves, amb edats per sota de 40 anys; entre un 10-15% de la població les detectarà.rango-audible

ultrasons esquema

Ja a l’any 2010 un article de revisió examinà 10 estudis de camp on s’havien assajat en condicions de camp aparells repel·lents basats en tecnologia d’ultrasons, i conclogué (sic) “have no effect on preventing mosquito bites» y que «should not be recommended or used«. Ras i curt no tenen cap efecte i no s’haurien de recomanar o emprar.

 

La base seria, però, coherent. Els ultrasons, freqüències de 15 Hz o superiors, “recordarien” el so dels espiadimonis, un depredador natural dels mosquits (de fet el batec de les ales d’aquests animals emet, està, entre els 20 i els 150 Hz), i els mantindrien a distància. Sembla coherent però és del tot inefectiu.

 

Aquesta creença falsa, però, fa més de 30 anys que circula: ja es va publicar una revisió científica sobre repel·lents electrònics l’any 1974.

 

Una altra explicació de la suposada efectivitat dels ultrasons és que també replica el so del mosquit mascle (umm, de totes les espècies?). Les femelles de mosquit que cerquen humans per alimentar-se habitualment ja s’han aparellat i es suggereix que tracten d’evitar contactes amb altres mascles. Aquesta explicació també és falsa perquè els mosquits mascles produeixen so en la banda dels 700 Hz, molt per sota de la freqüència dels ultrasons “comercials”. I per acabar-ho d’adobar es creu que les femelles de mosquit tenen escassa sensibilitat als sons, en general.

 

Els ultrasons han estat un reclam comercial per emisores de radio que deien que emetien també aquesta freqüència de manera que qui escoltava amb l’aparell al costat estava protegit dels mosquits (dues emisores canadenques el 1984, a Austria el 2007, i a Romania, Bucarest el 2010; Brasil més recentment).

 

Darrerament també s’han vist una sèrie de apps (dotzenes d’elles) per telèfons mòbils tant per sistema Android com Apple basades en la tecnologia dels ultrasons. Ja al 2003 una firma sud-coreana llançà una apliació d’emissió d’ultrason descarregable en telèfon mòbil i clamava que era efectiva en un radi d’un metre contra els mosquits. Jo de vosaltres preguntaria quantes d’elles han estat testades en laboratori, i si es així en quin laboratori i enfront quins mosquits.

 

El metode d’assaig és molt semblant al que es fa servir pels repel·lents químics. Consisteix en aplicar-se el repel·lent a la superficie del braç i la mà i introduir els mateixos per un forat en una capsa transparent (que no pemet la sortida dels mosquits) amb un nombre definit de mosquits (25-50 unitats) en el seu interior. Durant un temps definit (per ex. tres minuts) es compten els aterratges dels mosquits; si un mosquit aterra no hi ha efecte repel·lent. És normal que un producte efectiu funcioni, és a dir, no hi hagi aterratges, res més aplicat i durant 1, 2, 3, 4 hores i que a mesura que avança el temps els mosquits s’apropin més al braç/mà fins finalment aterrar. Tampoc és el mateix que la prova es faci amb un Culex pippiens, per exemple, un mosquit molt nostrat, molt mediterrani, que amb Aedes albopictus, el mosquit tigre, ara també molt nostrat però fins fa uns anys exòtic, que sembla tenir molt menys «olfacte» i no es deixa repelir tant pels repel·lents.

 

L’experiment es pot fer també ficant la mà amb un mòbil que porti activada una app emissora d’ultrasons. Si l’app funcionés cap mosquit hauria de posar-se al braç, i en aquest cas l’efecte no podria perdre’s amb el temps, ja que el químic, el principi actiu, sí es disipa amb el temps, però una emissió continua no Alguns entomolegs han fet proves i han demostrat que això no es compleix des d’el primer moment.

 

A http://www.mosquito.org/faq, es parla d’un estudi en el que es testaren 5 diferents aparells d’ultrasons vers 4 especies diferents de mosquits i en el que es demostrà que els ultrasons en el rang dels 20-70 Hz no teniren cap efecte en reorientar el vol de les femelles de mosquits lluny de les persones. Que els emissors emetin en rangs més amplis tampoc serveix per a res. Com diu la web…The fact is that these devices just do not work – marketing claims to the contrary. Una decisió personal, doncs.

 

I també hi ha kits d’ultrasons per cotxes de nadons i nens, i aires condicionats equipats amb ultrasons (una idea ben peregrina) comercialitzada per LG (Corea) al mercat d’Indonèsia però també a Nigèria, el 2009, després d’assajos de laboratori, que no he pogut verificar, en ambdos països amb femelles d’Anopheles, mosquit transmissor de la malària, i que emetrien en un rang entre 30 Hz i 100 Hz. Significatiu, però ahora raonable, que no recomanin aquest “Anti-Mosquitos” aparell com a única mesura preventiva contra la malaria.

 

I el que per nosaltres pot ser una incomoditat o un petit frau, però sols això, pot ser un greu risc per la salut a països on les malalties vectorials són a l’ordre del dia. La gent, en aquests països, ha de protegir-se amb sistemes realment efectius i testats per l’experiència i anys d’usos com les mosquiteres o repel·lents químics efectius (i en el cas de la malària a antimalàrics pre-exposició); refiar-se dels ultrasons les posa en situació de sobreexposició als mosquits.

 

Però aquesta, aquesta és una altra història.

Comentaris virus-lents (160): El Niño pot portar epidèmies sota el braç.

Està descrit que les condicions o fenòmens climàtics d’abast mundial, com és el fenomen de El Niño, conegut en el món científic com a ENSO (El Niño-Southern Oscillation El Niño-Oscil·lació del Sud), poden tenir impactes seriosos en la salut de molt amplies zones geogràfiques, particularment incrementant la transmissió de malalties infeccioses. Per saber més sobre ENSO aneu a https://ca.wikipedia.org/wiki/El_Ni%C3%B1o.

Estem parlant d’un fenomen cíclic però amb una periodicitat variable. Es repeteix des de fa segles, en cicles de 3 a 6 anys, amb una via d’anada (El Niño) i una de tornada (La Niña). A més, aquest fenomen no segueix cap calendari humà i tampoc hi ha una definició oficial o comunament acceptada de quan es pot dir que hom està en un event “El Niño”. Si heu llegit l’enllaç anterior sabreu que Els Niños molt forts succeeixen cada 50 anys, en mitjana; els Niños normals o canònics succeeixen cada 3 o 4 anys, en mitjana. Aquests tenen sovint efectes benèfics sobre les collites i el manteniment dels aqüífers i altres recursos en aigua, però provoquen danys apreciables un cop cada 10 anys aproximadament. Aquests cicles són, ara per ara, independents del tant esmentat canvi climàtic, la pujada de la temperatura per l’activitat humana, però el més probable és que aquest darrer l’afecti exacerbant els seus efectes (bàsicament extremant períodes de sequera o de pluges intenses) i alterant la seva freqüència.

Ara per ara, “El Niño” genera de forma sistemàtica episodis de sequera a la zona nord d’Amèrica del Sud i a Austràlia, Indonèsia, Filipines, i al Sud-est africà, incloent Madagascar. Per contra acostuma a generar molta pluviositat al  nord d’Argentina i Uruguay, al sud-est dels EEUU, fins Arizona i a la zona de la vall del Rift (Etiòpia, Kenya, Sudan del Sud, Uganda,etc.), a al sud de la India, incloent Sri Lanka.

Fenòmens com El Niño poden tenir conseqüències directes per a la salut al causar danys a les infraestructures, o per derivar recursos sanitaris no sempre suficients a prioritats puntuals. Però El Niño també té un efecte indirecte, al generar pèrdues de collites o ramats, gana, o malnutrició, i molt sovint migracions humanes; tots ells factors que faciliten la propagació de malalties infeccioses, al posar en contacte població no immunitzada amb poblacions infectades o carriers, a la recerca de menjar.

Una gràfica que resumeix aquests efectes es mostra a continuació…

ENSO potencials efectes salut pública

Inspirat per Kovacs et al., Lancet 2003

 

I quins exemples de malalties es veuen afectades per ENSO?

La incidència de la malària, una entre moltes malalties de transmissió vectorial, a diferents parts del món, es pot veure afectada per ENSO, incrementant la seva incidència o disminuint-la, en una relativament boja combinació d’efectes. A les terres altes del nord del Pakistan, temperatures suaus a la tardor i l’hivern, associades amb El Niño, incrementen la transmissió de malària. També a Uganda i Rwanda, temperatures més altes i pluges més intenses afavoreixen la malària però alhora pluges molt intenses (Tanzània, 1997) arrastraren tants punts de posta de vectors que els casos de malària descendiren. Brots de malària a Sri-Lanka, Colòmbia i Irian Jaya s’han lligat a sequeres causades per El Niño.

També s’ha trobat un lligam entre les epidèmies del dengue i ENSO a zones del sud-est asiàtic, Sud-Amèrica i les terres insulars del Pacífic. Aquí però hi ha un element distorsionador i és que en molts casos els vivers dels mosquits són producte de la intervenció, involuntària, humana.

També s‘ha relacionat ENSO i brots d’arbovirus indígenes d’aquell continent, com l’encefalitis Murray Valley, que es manifesta després de riuades i inundacions associades a “La Niña”. O la poliartritis epidèmica causada pel Ross River virus.

Un altre cas el tenim amb la febre de la vall del Rift causada pel Rift Valley Fever Virus (RVFV), una malaltia de transmissió arboviral que pot afectar intensament els ramats i de retruc les poblacions humanes que depenen d’ells. La inundació dels habitats dels mosquits determinen la seva proliferació i l’inici del brot en animals; els humans també queden exposat a la fiblada del mosquit o a l’exposició de carn, llet o sang contaminada amb RVFV.

Les més gran epidèmies de RVF a Àfrica coincideixen amb events “El Niño” particularment intensos; 1997-1998 i 2006-2007, per exemple; aquest darrer, causà més de 200.000 infectats i 500 morts a Kenya, Somàlia, Tanzània, Sudan i Madagascar, així com milions d’euros de pèrdues en bestiar i prohibicions d’exportació.

Els models matemàtics i climatològics dissenyats per preveure aquests fenòmens assenyalen que per aquest any 2016 les zones més perilloses serien Sudan, Etiòpia, Somali, Kenya i Tanzània. Aquest models tenen interès perquè poden permetre uns mesos abans iniciar dues accions fonamentals de caràcter preventiu com serien; vacunació dels animals (pel que fa a RVF això és possible ja que hi ha una vacuna per animals, encara no per humans) que sempre ha d’anar abans de la infestació de mosquits; i control del vector, que implica aplicar agents larvicides als vivers de mosquits abans que les pluges intenses, les inundacions els multipliquin.

També ENSO pot afectar les malalties transmeses per rosegadors. El nombre de rosegadors s’incrementa habitualment després d’hiverns temperats i humits. A Nou Mèxic els casos de pesta (Yersinia pestis) són més freqüents després d’hiverns i primaveres plujoses. El descobriment dels Hantavirus (si voleu saber més aneu a l’entrada 10, https://comentarisviruslents.org/2014/06/25/comentaris-virus-lents-10-el-virus-exposit-no-sin-nombre/) i els posteriors brots estan lligats també a ENSO però de forma oposada. A un plujós fenomen d’ENSO seguí una sequera que apropà molt els rosegadors a altres fonts alternatives de menjar, graners, incrementant les interaccions rosegadors-humans. Durant i després de l‘episodi ENSO de 1997-98 les poblacions de rosegadors es multiplicaren per 20, i els casos de síndrome pulmonar per hantavirus es multiplicaren per cinc.

Però on l’efecte és potser més directe és a les infeccions entèriques; les riuades  i inundacions porten a la contaminació dels subministraments d’aigües. Als països tropicals les malalties entèriques tenen un fort repunt a l’època de pluges, i qualsevol fenomen que les reforci, com ENSO, les intensifica. Hi ha estudis que correlacionen la incidència de còlera a Bangladesh i la temperatura de l’aigua superficial a la badia de Bengala, que de retruc afectaria l’abundància de plàncton, un reservori de Vibrio cholerae. De fet, hi ha un model validat que relaciona ENSO amb les epidèmies de colera (Vibrio cholerae) a Dhaka, la capital de Bangladesh, amb 7 milions d’habitants densament empaquetats; la epidèmia es pot predir amb quasi un any d’avançament segons el model climàtic.

Sigui per causes climatològiques locals, no relacionades amb ENSO, sigui pels patrons multianuals relativament anàrquics d’ENSO o sigui per l’escalfament global de la Terra a conseqüència del canvi climàtic, el clima, impactant sobre les poblacions i nivells d’activitats de vectors o dels seus hostes i les interrelacions entre ells, té un efecte continu, i potser ara mateix manifestament unidireccional, en l’emergència o dispersió d’infeccions víriques i bacterianes.

Però aquesta, aquesta és una altra història.

Comentaris virus-lents (75): Acció-reacció; canvi i adaptació? La malària ens prefereix sense mutacions al cromosoma 11.

L’anèmia drepanocítica o falciforme es deguda a una mutació de la molècula de hemoglobina, una proteïna que es troba dins el glòbuls vermells, els eritròcits; és la molècula que fa circular l’oxigen pel nostre cos, i que recull el CO2 per alliberar-ho al pulmons. El canvi en un aminoàcid de la seqüència proteica és responsable de la formació incorrecta de la molècula constituïda per quatre cadenes de aminoàcids; aquesta és la hipòtesi arriscada però encertada que va proposar Linus Pauling l’any 1949 per explicar la malaltia i que va demostrar ser correcta. Com a conseqüència els eritròcits que les alberguen son capaços de transportar menys oxigen i tenen una vida més curta (de 10 a 20 dies en lloc dels 100-120 dies de vida mitja), provocant anèmia al no ser reemplaçats a temps. A més quan no transporten oxigen queden deformats, en forma de falç (falx en llatí), d’aquí el nom. Aquesta forma fa que no puguin travessar certs capil·lars, provocant hemorràgies, dificultats respiratòries, mals a les extremitats, uns problemes seriosos. Aquests episodis dolorosos, poden durar d’hores a dies i donar-se uns quants cops per any o bé de forma més espaiada.

Tan seriós és que en el cas de tenir únicament eritròcits falciformes, es a dir, si som homozigots per aquest gen (això vol dir que les dues còpies que tenim del gen són les dues iguals) probablement morirem abans d’arribar a l’edat adulta, per tant, detall important, no arribarem a reproduir-nos.

Bé, i com és que encara avui tenim aquest gen, ubicat al cromosoma 11 (més específicament un gen autosòmic recessiu) dins la nostra dotació genètica? Com és que no ha estat eliminat per aquesta “cega” selecció natural? Clarament sembla que el cost supera el benefici, no? No, no ben bé.

Hem parlat dels homozigots, però també n’hi ha un sector de la població heterozigot; ha rebut una copia del gen mutat d’un progenitor i una còpia normal de l’altre progenitor. Resulta que aquesta combinació ha estat i és seleccionada activa i favorablement en les zones tropicals d’Àfrica i Àsia perquè confereix protecció en front els paràsits (Plasmodium falciparum) que desencadenen la malària. Un individu heterozigot per aquest gen, menys eficient que un homozigot que té dos còpies del gen normal pel que fa a la captació i transport d’oxigen pels glòbuls vermells, té un avantatge envers aquest, ja que la estructura de l’hemoglobina modificada accelera l’eliminació de les cèl·lules infectades.

Els individus homozigots pel gen normal son més eficient però no tenen aquesta protecció natural contra la malària i per tant en un entorn de pressió selectiva per forta incidència de malària el seu èxit reproductor serà inferior al dels heterozigots (senzillament alguns moriran abans de tenir fills o de tenir-ne molts). Els individus heterozigots, per tant, estan sobre-representats a les zones endèmiques de malària. De la mateixa manera, si portem una població d’individus majoritàriament heterozigots en un entorn amb absència de malària, en unes poques generacions s’haurà tornat majoritàriament homozigot del gen normal, pel motiu exposat més a dalt. És el que va passar amb la població afroamericana que va ser extirpada violentament d’Àfrica i portada a Amèrica on no hi ha malària.

Per tant, quan aquesta informació genètica, aquest gen, apareix en heterozigosi confereix, en un ambient amb malària, una avantatge respecte els que no el tenen, i és el balanç entre beneficis i costos de tenir el gen i la diferència relativa en eficàcia biològica amb els individus homozigots pel gen normal, el que modularà la freqüència d’aparició del gen a les diferent poblacions humanes.

Recordem, però que estem discutint d’un factor que interrelaciona amb molts altres en una pandemònium d’accions i reaccions que determinen la relació hoste versus invasor/paràsit/patogen en un procés infecciós. El que veiem, a nivell poblacional, és el resultat d’una evolució silent alimentada per una impertèrrita selecció natural. I nosaltres som una baula més.

Però aquesta, aquesta és una altra història.