comentarisviruslents

Aquest blog és una seguit de comentaris personals i probablement poc transferibles sobre ciència i política.

Archivos en la Categoría: descontaminació

Comentaris virus-lents (191): On vas envàs? Un cas d’infecció per manipulació de residus.

Tinc costum de llegar-me les noticies de ciència, particularment les de biologia i més concretament les de microbiologia i salut pública.

 

Fa uns dies va aparèixer una noticia a El Pais sobre una infecció laboral. Des d’aquí trencar una llança per aquest diari, en aquest tema, que no he vist reflectit en cap altre. Llàstima que l’esforç no hagi reeixit, com a mínim totalment, ja que l’article conté imprecisions i errades. L’enllaç a l’article és:

http://elpais.com/elpais/2017/04/05/ciencia/1491404701_565479.html

 

El resum vindria a ser: un treballador que feia la seva feina a finals del 2013 en una planta de tractament de residus on anaven a parar els residus d’ hospitals i centres de recerca es va infectar al punxar-se amb una agulla que va travessar el seu calçat de seguretat. Com la persona, a més, tenia un trastorn autoimmune, les seves defenses no van poder fer res contra el patogen involucrat, un bacteri anomenat Brucella suis, que és aïllat freqüentment en porc senglars i llebres a Europa (el seu reservori natural) i ocasionalment en porcs però rarament a persones (de fet mai s’havia descrit a Espanya). De fet, aquest seria el primer cas descrit de infecció per aquest bacteri a la Península, què no en el món, que diu l’article.

 

Però endinsem-nos en la noticia per desenvolupar alguns temes:

 

Se’ns informa que (sic)  “la historia del contagio es insólita”. Ben bé insòlit és el lloc on es va produir (i no sabem quantes d’aquestes infeccions ocupacionals, no laboratorials, no es reporten) però no el medi o la via. Des de fa moltes dècades l’autoinoculació o accidents amb agulles o altres elements punxant estan al capdamunt de les causes d’accidents i de les subseqüents infeccions, mentre que les transmissions per via oral (ingestió, amb la prohibició taxativa del pipeteig amb la boca) i per via respiratòria (amb l’arribada de mascaretes eficients i de barreres primàries com les cabines de seguretat biològica) han caigut en picat. El lloc és certament un lloc crític perquè rep un mix de residus sanitaris de diferents centres, per tant amb diferents patògens. Aquests centres executen una tractament per inactivar els residus per esterilització a l’autoclau i aquí el nostre periodista rellisca totalment al qualificar-lo com un “recipiente metálico de alta presión”. Si s’hagués molestat en consultar la wikipedia en castellà hagués trobat: “La acción conjunta de la temperatura y el vapor produce la coagulación de las proteínas de los microorganismos, entre ellas las esenciales para la vida y la reproducción de éstos, hecho que lleva a su destrucción”. La versió catalana de la wikipedia és més clara fins i tot, al definir-lo com: “un dispositiu que serveix per esterilitzar material mèdic o de laboratori, utilitza vapor d’aigua a alta pressió i temperatura, evitant amb les altes pressions que l’aigua arribi a bullir tot i la seva alta temperatura. El fonament de l’autoclau és que desnaturalitza les proteïnes dels microorganismes...”. L’autoclau no mata per alta pressió, mata per la temperatura assolida. En el cas que ens ocupa, una temperatura de 130ºC en sec sense vapor també tindria força efectivitat. Una pressió de dues atmosferes addicionals, sense vapor d’aigua, que és la que s’assoleix dins l’autoclau en un cicle a uns 130ºC, fa pessigolles al mon microbià. De fet tota la gent que fa immersió sap que una atmosfera addicional de pressió (per tant 2 atmosferes totals) són les que es tenen a 10 metres de fondària al capbussar-se, i 3 atmosferes totals s’assoleixen als 20 metres i no sembla que la gent pateixi gaire.

 

brucella-bacterium micrografia electrònica acolorida

Micrografia electrònica acolorida de Brucella spp:  https://5bioterrorismdiseases.wikispaces.com/3++Brucellosis

Epidemiològicament pot ser molt difícil traçar una infecció perquè els patògens són ambientals, estan repartits, disponibles en molts llocs i és difícil atribuir-los una font única. Recordem que un agent químic té efectes immediats o quasi immediats però que un agent biològic dona el seu efecte dies o setmanes després de la infecció (i aquesta és una qualitat “útil” si es miren les potencialitats bioterroristes ja que permet, a l’actuant, estar ben lluny del focus). Únicament si el patogen té una firma específica, uns marcadors no habituals en la natura es pot associar el seu origen, moltes vegades un laboratori de recerca, com ha estat el cas. I aquest ha estat el cas perquè de Brucella suis hi ha cinc biovars o famílies (de biovar 1 a biovar 5).  Els biovars 1, 2 i 3 es mantenen circulant en porcs senglars i domèstics; com hem dit el biovar 2, a més, circula bastant entre les llebres a Europa. Però resulta que el biovar 1 mai ha estat aïllat a Europa amb l’excepció de Croàcia. Si a més la soca, identificada genèticament, del malalt (una Brucella suis biovar 1 soca 1330, aïllada originalment d’un porc a Minnesota el 1950) casa exactament amb una soca en la que s’estava treballant en un laboratori que va portar els residus a processar a aquesta planta en aquell període de temps ja està tot dit.

 

I ara anem al quid, el tractament de residus. Pel que no sapigueu massa de que va el tema us posaré l’exemple del meu centre de recerca. Treballem amb patògens perillosos (grup de risc 2) o molt perillosos (grup de risc 3). Qui vulgui saber més sobre categorització del risc dels microorganismes pot visitar aquet mateix blog, la entrada 29, https://comentarisviruslents.org/2014/08/01/comentaris-virus-lents-29-grups-de-risc-nivells-de-bioseguretat-i-avaluacio-de-risc/. Un cop acabada la feina, tot el material en contacte amb el patogen (pipetes de plàstic, medis de cultiu, hisops, nanses de sembra, etc.) que ja pot haver estat parcialment desinfectat és abocat dins de contenidors de plàstic homologats que un cop plens son tancats per ser recollits per una empresa homologada i enviats a un centre de tractament com l’esmentat. Res que ha estat en contacte amb material biològic infecciós va a les escombraries municipals.

 

És el productor del residu el responsable d’etiquetar correctament el contenidor i d’assegurar-se del seu correcte tancament. Els contenidor estan proveïts d’un sistema de grapes que un cop tancat fa (per mi) impossible que es pugui tornar a obrir. Addicionalment moltes tapes de contenidor tenen, al seu perfil interior, un material adhesiu que quan entra en contacte amb les vores superiors del bidó es peguen molt, molt fort. L’article indica: “Se deben realizar controles para asegurar que los contenedores de residuos están sellados” i es cert però evidentment aquests controls s’han de fer en origen, al mateix centre o hospital ja que si es fan en destí, i el contenidor no compleix implica un nou transport (per tant risc addicional) per retornar-lo al productor del residu.

 

Si el contenidor, com sembla, es va obrir abans del tractament, és evident que no es va tancar bé en origen; hi ha contenidors que poden semblar ben tancats però no sempre ho estan.

 

El que sí sembla un contrasentit és el que esmenta el veterinari…”La legislación debería ser más exigente, porque ahora mismo permite meter material biológico sin autoclavar [sin esterilizar] en los contenedores”. Home, fora ideal esterilitzar per autoclau en origen, com es diu, però llavors quin sentit tindria enviar-ho a les plantes de tractament…per esterilitzar-lo altre cop. I compte, que això implicaria centenars de centrals d’esterilització repartides per tot el territori amb el increment de consum energètic, de maquinària que requeriria manteniment i de personal que això suposa. Per mi aquesta legislació és correcta, sempre i quan els contenidors es tanquin correctament i perfectament. Perquè aquests contenidors estan construïts a prova de punxades i cops.

 

Capítol apart mereix el paràgraf (sic): La investigación de Guimbao y Compés reveló que “pese a utilizar botas y guantes, los pinchazos eran frecuentes” al procesar manualmente los residuos ya esterilizados para reciclar el plástico. Al descargar los camiones y llevar los contenedores contaminados al esterilizador, los pinchazos eran “infrecuentes”, pero no inexistentes. Com ja he indicat un transport acurat de contenidors correctament tancats amb personal proveït de equips de protecció individual correctes i ben posats fa impossible una inoculació. Si veiéssiu el gruix de la paret d’un contenidor i el gruix de la sola d’una bota d’aquests treballadors entendríeu el meu escepticisme. El que m’ha sorprès, però, és que la valorització del residu porti a processar manualment aquestos un cop esterilitzats per reciclar el plàstic. Aquesta sí que és una activitat de risc perquè tothom que sàpiga d’autoclaus sap que un cicle d’esterilització és fortament depenent del tipus de la càrrega dins del contenidor, i en aquest cas les càrregues no són gens homogènies ni estan gaire caracteritzades.

 

I una conclusió tremendista i inconsistent alhora. Al mateix primer paràgraf de la noticia es parla que aquest cas “Según los médicos que lo atendieron, es el primer caso en el mundo.” No ens queda clar a què es refereixen però el que és evident és que no es tracta del primer infectat humà per  Brucella suis biovar 1. Al mateix article que esmenta el periodista (veure… https://www.ncbi.nlm.nih.gov/pubmed/27474211) es diu “B.suis biovar 1 has been never reported previously in any species in the European Union, with the exception of Croatia, despite being a major cause of human brucellosis in America, Oceania and Asia”. La frase de la noticia queda llavors del tot invalidada, com a mínim en el context que jo l’entenc.

 

I finalment un tema més personal, sense ser periodista. Com es pot posar una primera frase de la mena “El 3 de febrero de 2014, un hombre de 53 años con una leve discapacidad intelectual llegó al hospital….”. Quin paper juga aquí la discapacitat intel·lectual? El va fer més sensible al bacteri? És rellevant des d’el punt de vista de la salut pública? Es vol indicar/insinuar que amb aquesta discapacitat no es van complir o es van complir malament els requeriments de seguretat? Ho trobo molt poc rellevant i fins i tot, fora de lloc.

 

I és que informar, informar amb els ítems rellevants i exactes, en el degut ordre, deu ser tasca molt difícil.

 

Però aquesta, aquesta és una altra historia.

 

 

Comentaris virus-lents (188): I ara como inactivem H5N8 un cop ens ha entrat…

Estem en plena onada de la soca H5N8 del virus de la grip aviaria a Europa…veurem com es van desenvolupant els esdeveniments de la seva progressió però el motiu d’aquesta entrada no és aquest, és parlar de com inactivar el virus, de com descontaminar o desinfectar un àrea, element o estri contaminat.

cabezal_influenza_cataluna

de: https://avicultura.info/influenza-aviar-control-cataluna/

El primer fet a constatar és que la inactivació és un procés físic o químic (també pot ser biològic però no embolicarem la troca) que no és massa depenent de soca. La inactivació actua sobre el embolcall, la càpside o l’àcid nucleic; per a tots els virus de influença A que ens ocupen les diferències es troben a nivell de seqüència, ja sigui de nucleòtids o aminoàcids però no tenen un trasllat evident a una major o menor estabilitat del embolcall o de la càpside (o no ha estat descrit fins ara). Un H5N8 és “igual” que un H5N1, un H7N1 o un H7N9 quan s’enfronta a una solució alcohòlica, una dilució de lleixiu o l’acció de la llum ultraviolada. Sí que s’ha trobat algunes diferencies entre soques en condicions ambientals, en principi, menys agressives. Fent una imatge gràfica, tots els virus influença A responen igual quan els disparem un obús però no quan els disparem amb una fona de forma continuada.

Sí té molta importància, però, el medi circumdant. Per fer una bona desinfecció ens cal abans haver retirat la major part de la matèria orgànica interferent (això pot semblar fàcil, relativament, en estris, aparells, maquines i roba però no ho és gens en naus o instal·lacions que han contingut animals). Aquesta retirada o reducció és fonamental. Si no es fa així pot passar que el consum de desinfectant sigui superior, o molt superior al teòric ja que cal comptar que una part del mateix no es dedicarà a inactivar el virus si no que quedarà segrestat i inutilitzat per la matèria orgànica.

I contra el pensament generalitzat el virus de la influença aviar H5N8, com les altres soques HPAI (Highly Pathogenic Avian Influenza), s’excreta majoritàriament a través de les femtes; certament també ho fa en menors quantitats per tràquea i vies respiratòries però la via principal és la fecal. I parlem de paraules majors, del ordre de 10.000.000 virus infecciosos per gram de femtes en animal infectat. Les femtes, quan s’assequen, poden ser resuspeses pel vent, per accions mecàniques com escombrats o trepitjades fortes i llavors passen a l’aire si bé de forma inestable (acaben tornant al terra o sobre objectes i superficies). A més un cop infectat l’au pot estar excretant el virus per dies…fins a la seva mort, que en el cas d’aus infectades per HPAI és pocs dies després.

 

SANT GREGORI GIRONES SOCIETAT  GRANJA ANECS 23 02 17 FOTO ICONNAde: http://www.elperiodico.com/es/noticias/medio-ambiente/agricultura-ordena-sacrificio-granjas-patos-gripe-aviar-5859245

Llegim ara aquest petit extracte…

Tras la eliminación de los cadáveres, todas las naves o recintos en los que se hayan alojado las aves de corral u otras aves cautivas, los pastos o terrenos, los vehículos utilizados para su transporte o el de sus cadáveres, carne, piensos, estiércol, purines, yacija y cualquier otro material o sustancia que pueda estar contaminado, serán sometidos a un procedimiento de limpieza y desinfección…. Se certificará la misma mediante acta oficial.

A: MANUAL PRÁCTICO DE OPERACIONES EN LA LUCHA CONTRA LA INFLUENZA AVIAR en: http://rasve.magrama.es/Recursos/Ficheros/Manuales/MARM/78_Manual%20IA%20Actualiz%20septiembre%202014.pdf

 

En el buidat d’una granja es donen una sèrie d’accions successives i complementàries. S’han d’eliminar els animals de la forma més humanitària possible; s’han de processar els seus cadàvers perquè no puguin transmetre la infecció; i s’ha de desinfectar la instal·lació per poder tornar a entrar animals que no s’infectin altre cop amb virus encara existents a la mateixa…si tornen a entrat “de novo” pot ser un problema de maneig o de manca de bioseguretat atribuïble al granger (en el cas d’instal·lacions tancades; quan són obertes, el medi ambient mana). Desenvolupem una mica cada acció.

 

La neteja i la desinfecció de les explotacions infectades s’ha de dur a terme seguint un protocol bastant estricte.

Cal una neteja i desinfecció prèvies: En el moment de matar les aus caldrà fer-ho de forma que s’eviti o redueixi al mínim la dispersió dels virus; per això és convenient portar els equips temporals de gasificació i desinfecció al costat de la nau, el subministrament de vestimenta protectora, dutxes, i sistemes de descontaminació de l’equip, instruments i elements utilitzats, així com anular, o no alimentar, el sistema de ventilació.

Tot l’equip portàtil es desmantellarà per a la seva neteja i desinfecció separada. Es desinfectarà tot el material que s’hagi utilitzat en el sacrifici (roba, botes, estris, vehicles, bolquets, pales, etc.). Els materials d’un sol ús seran retirats de forma segura (recipients tancats i hermètics) per la seva posterior eliminació (idealment incineració). Les instal·lacions elèctriques i equips electrònics s’han de protegir per al seu posterior tractament específic, que normalment implica una fumigació amb formaldehid.

Les parts de l’explotació en què s’haguessin allotjat els animals sacrificats, així com parts d’altres contaminades durant el sacrifici o la necròpsia, es fregaran i netejaran de tota matèria orgànica emprant un producte de neteja de les superfícies, començant pel sostre o teulada, a continuació les parets, de dalt a baix i finalitzant per terra. Després de la neteja es ruixen les superfícies amb desinfectants autoritzats (veure un llistat bàsic més a baix). Les operacions de neteja (aigua i detergent), a fons, han de ser prèvies a les operacions de desinfecció per eliminar gran part de la matèria orgànica que impedeix l’adequada actuació de molts dels desinfectants. El desinfectant aplicant romandrà sobre la superfície tractada durant almenys 24 hores (és a dir, no esbandirà, es deixarà assecar).

Després es farà una neteja i desinfecció finals, que implica un nou desengreixat de les superfícies per treure brutícia residual i aclarit amb aigua freda tornant a ruixar de nou les superfícies amb desinfectant. Transcorreguts set dies es tornaran a repetir totes les operacions de neteja i desinfecció.

 

Com eliminar el llit i les femtes dels animals? El llit i els fems de l’explotació, un cop eliminats els animals, s’hauran de tractar mitjançant un mètode idoni per eliminar el virus. Els mètodes contemplats per la legislació europea són: tractar-los amb vapor fins assolir 70ºC; destrucció per incineració o enterrament a una fondària tal que impedeixi l’accés d’aus silvestres i altres animals,;o ser sotmesos a un compostatge/compactació que generi calor interna, ruixats amb desinfectants i deixats almenys per 6 setmanes abans de qualsevol altra manipulació. Umm, 70ºC, incineració, calor interna? L’explicació és obvia; està més que demostrat que independentment de la soca aquests virus són molt poc estables tèrmicament i temperatures de 56-60-65ºC determinen inactivacions de 4-5 o més log (això vol dir inactivar 10.000-100.000 virus) en períodes curts de temps 30 min., mentre que temperatures de 70-80ºC o superiors poden assolir la inactivació total en terminis molt més curts, 1-5 min.

Qualsevol moviment de llit o femtes d’animals, al lloc on seran eliminats o bé a un lloc d’emmagatzematge transitori abans de la seva destrucció o tractament, es realitzarà en vehicles o recipients tancats i estancs, sota supervisió oficial, per evitar propagació ulterior del virus.

Si es determina que no és possible netejar i desinfectar alguna de les explotacions o part de les mateixes, es podrà prohibir l’entrada de persones, vehicles, aus de corral, aus captives, mamífers d’espècies domèstiques o objectes a aquestes explotacions o part de les mateixes per un mínim de 12 mesos.

 

L’elecció dels desinfectants i dels procediments de desinfecció es farà en funció de la naturalesa de les explotacions, vehicles i objectes que es s’hagin de tractar.

Els desinfectants que s’hagin d’utilitzar i les seves concentracions hauran estat prèviament autoritzats i s’utilitzaran seguint, o bé les recomanacions del fabricant quan es disposi d’elles o bé les instruccions del veterinari oficial.

Els desinfectants, productes químics, i / o procediments que pot ser necessari emprar són els següents:

Objecte a desinfectar Desinfectant / producte químic / procediments
Aus vives Eutanàsia (diòxid de carbono;dislocació del coll)
Canals Enterrar o cremar
Galliners/equips Sabons i detergents; agents oxidants i àlcalis
Humans Sabons i detergents
Equips elèctrics Fumigació amb formaldehid
Aigua Drenar al camp quan sigui possible
Pinso Enterrar
Efluent, fems Enterrar o cremar; àcids, àlcalis
Vivendes Sabons i detergents, agents oxidants
Maquinària, vehicles Sabons i detergents, àlcalis
Roba Sabons i detergents, agents oxidants i àlcalis

 

I el llistat de detergents i desinfectants genèrics d’elecció seria el següent:

Sabons i detergents: temps de contacte 10 minuts.

Agents oxidants:

  • hipoclorit sòdic: líquid, diluir fins a 2-3% de clor disponible, no és adequat per a materials orgànics, degut a l’emissió de cloramines i gasos amoniacals. Temps de contacte 10-30 minuts.

  • hipoclorit càlcic: sòlid o en pols, diluir fins a 2-3% de clor disponible (20 g/litre si és pols, 30 g/litre si és sòlid), no adequat per a materials orgànics. Temps de contacte 10-30 minuts.

  • Virkon®: 2% (20 g/litre). Temps de contacte 10 minuts.

Àlcalis: (no utilitzar amb alumini o altres aliatges similars)

  • hidròxid sòdic (NaOH): 2% (20 g / litre). Temps de contacte 10 minuts.

  • carbonat de sodi (Na2CO3. 10 H2O): 4% (40 g/litre si és en pols, 100 g/litre si està cristal·litzat), recomanat per a ús en presència de materials orgànics. Temps de contacte 10-30 minuts.

 Àcids:

  • àcid clorhídric (HCl): 2% (20 ml/litre), Corrosiu, utilitzar només si no es disposa d’altres productes químics.

  • àcid cítric: 0.2% (2 g/litre), segur per descontaminar la roba i el cos. Temps de contacte 30 minuts.

Gas formaldehid: tòxic, només si no fos possible utilitzar altres productes. Temps d’exposició 15-24 hores.

Una llista més extensa i detallada la trobareu a:

http://www.fao.org/avianflu/en/disinfection.html

 

En resum, es cerca portar l’embolcall i/o la càpside del virus a la seva degradació. Els detergents i tensioactius actuen sobre la bicapa lipídica del embolcall desorganitzant-la i trencant-la. Els pH extrem d’àcids i àlcalis són útils ja que els virus influença són molt sensibles a pH força àcids (per sota de 3) o força bàsics (per sobre de 12). Qualsevol agent oxidant com el Virkon o el lleixiu actua sobre els radicals lliures del proteïnes de càpside i embolcall degradant-les. Si la concentració de lleixiu és prou alta fins i tot pot trencar els àcids nucleics per punts inespecífics.

 

Eliminació de cadàvers:

Els mètodes autoritzats de destrucció dels cadàvers són: l’enterrament, la incineració i l’enviament a plantes de transformació de cadàvers i subproductes carnis. L’elecció del mètode de destrucció dependrà de diferents factors, com: la localització de les naus infectades, el nombre d’animals de l’explotació, el tipus d’explotació, la disponibilitat i característiques del terreny per efectuar la incineració o l’enterrament i la proximitat a l’explotació d’una planta de transformació.

En qualsevol cas els cadàvers de les aus sacrificades s’han de ruixar amb desinfectant i ser retirats de l’explotació en vehicles o recipients tancats i estancs. Els teixits o la sang que s’hagin vessat durant sacrificis o necròpsies s’ha de recollir amb cura i eliminar juntament amb les aus sacrificades.

Si el mètode escollit és l’enterrament:

  • Els cadàvers a la fossa han de ser ruixats amb calç viva entre capa i capa que serà distribuïda uniformement.

  • Per tancar la fossa es cobrirà, com a mínim, amb 1,5 metres de terra.

  • Abans de cobrir la fossa totalment es llançarà tot el material d’un sol ús, vestidors, calçat, utilitzat pel personal durant les operacions.

  • L’àrea al voltant de la fossa serà ruixada amb un desinfectant adequat.

  • L’entrada a aquesta fossa serà tancada i es prohibirà l’accés. Vigilar l’entrada de gossos, gats, ocells, etc. als voltants de la fossa.

  • Tot el material i equips emprats en aquestes operacions han de ser apropiadament desinfectats.

Si la fossa d’enterrament està situada fora de l’explotació, caldrà que estigui el més allunyada possible de camins públics, habitatges i altres explotacions però alhora que sigui de fàcil accés pels camions i maquines excavadores.

Si el mètode d’elecció és la incineració, caldrà emprar una gran quantitat de material inflamable per a la incineració dels cadàvers i caldrà una supervisió i custodia constant del material a incinerar. Això porta el problema logístic de com fer arribar els cadàvers a la instal·lació incineradora; com bé sabeu no n’hi ha gaires incineradores.

En qualsevol cas, els vehicles utilitzats per al transport, han d’anar precintats i ser a prova de fuites per evitar les pèrdues de líquids durant el transport, per a això són convenients els vehicles amb cubetes estanques, que impedeixin l’eliminació de material (sang, excrements,…) durant el transport; aquests vehicles hauran de ser subjectes d’una completa neteja i desinfecció posterior.

 

Com veieu és un problema logístic important que es multiplica quan el nombre d’animals creix i encara es multiplica més quan tens diversos focus que gestionar. Descartant l’atzar, si un no és completament estricte en tots els focus del brot pot involuntàriament permetre propagacions secundàries o el que és pitjor, en trànsit. Això pot explicar, ni que sigui parcialment, que en tres mesos a França encara estiguin bregant amb la soca H5N8.

 

Però aquesta, aquesta és una altra història.

Comentaris virus-lents (175): La bioseguretat és un cristall preciós amb moltes facetes.

Ja sabeu, qui em llegeixi, que sóc un viròleg de formació que em dedico ara a la gestió en una instal·lació de biocontenció de patògens perillosos, alguns potencialment mortals.

Quan es manegen patògens perillosos, no solament és necessari tenir-los continguts, dins d’unes instal·lacions que garanteixen que no siguin alliberats inadvertidament, sense voler, a l’exterior, si no que la gent que hi treballa ho faci de forma segura, evitant infeccions laboratorials que puguin ser transmeses a la família, o a la comunitat.

Tots aquests conceptes de bioseguretat i biocontenció, alguns altament tecnificats, són vistos de maneres diferents per persones diferents, en diferents moments de la vida de la instal·lació però també fins i tot en un moment concret, en un mateix dia de la instal·lació. No és el mateix l’arquitecte que dissenyarà l’edifici, que el personal investigador que hi treballarà, que el cap de manteniment que voldrà mantenir-lo en perfecte estat al llarg dels anys, que l’oficial de bioseguretat que ha de mirar que els procediments s’atinguin a l’ instal·lació i a l’inrevés, que el Director que ha de trobar finançament per pagar una instal·lació, de ben segur necessària, però també “cara”. Altre cop, les diferents facetes d’un cristall.

I la manera d’entomar la bioseguretat també està fortament condicionada pels patògens i les espècies animals o vegetals amb les que treballen. No és el mateix la bioseguretat i biocontenció en una instal·lació hospitalària (recordeu els casos d’Ebola, alguns a la península Ibérica, però també possibles casos de MERS coronavirus, SARS coronavirus, virus Crimea Congo, influenza altament patògena, que a la seva vegada serien molt diferents de les condicions per manegar infectats de Chikungunya o Zika, per exemple), que la bioseguretat en aqüicultura (on el que es tracta es evitar que els virus o bacteris amb els que experimentalment s’infecten peixos arribin a les aigües del voltant), que la bioseguretat vegetal (on el perill fonamental rau en la disseminació de les llavors, de plantes modificades, cap a l’exterior) com en la bioseguretat i biocontenció d’artròpodes infectats amb patògens zoonotics (on el perill no rau tant en el virus o bacteri manipulat, que també, si no en l’escapament de mosquits o altres artròpodes infectats amb un agent exòtic i la potencial establiment d’un cicle autòcton per infecció de persones al voltant de la comunitat). Les eines i les solucions en cada cas seran ben diferents. Com veieu, les diferents facetes d’un cristall, altre cop.

I després el món de les empreses, que aporten solucions tecnològiques als reptes de bioseguretat i biocontenció; com fer una instal·lació més segura, però alhora mes eficient; com descontaminar de forma efectiva zones afectades per un alliberament voluntari (per exemple un treball dins un box experimental), però també com descontaminar material infectat que ens ve decomissat pel cossos de seguretat; com descontaminar el personal en la seva sortida de la instal·lació; com eliminar de forma segura els residus que es generen dins la instal·lació; com transportar i eliminar aquells residus que no es poden processar dins; con moure a l’exterior i per l’exterior material biològic valuós (mostres, soques infeccioses) amb seguretat; aparells i sistemes barrera per protegir els treballadors de l’exposició directa al patogen, etc. I cadascú, fins i tot dins el mateix camp, fa aproximacions i dona solucions diferents. Altre cop, les diferents facetes d’un cristall.

 

KIDS62AWR

I finalment la formació. Diferents eines de formació, algunes totalment instal·lades en el e-learning, tant a nivell estatal com internacional, altres allotjades dins de cursos de postgrau o d’extensió universitària, altres portant la formació dins de l’entorn universitari, tant a professor s com a estudiants com als propis treballadors de la universitat. La formació, que és específica de cada persona, és per això difícilment estandaritzable, però que cal intentar homologar o fer convergir a uns mínims estàndards comuns. Altre cop, les diferents facetes d’un cristall.

 

englisch_biostoffv-G-wordml02000001

Doncs bé, algunes, que no totes, les facetes d’aquet cristall preciós seran observats amb detalls al 3er congres de la Asociación Española de Bioseguridad que tindrà lloc a Bilbao els dies 17 i 18 d’octubre i al que assistirem molta gent amb ganes d’escoltar, però també de dir la nostra.

Però aquesta, aquesta és una altra història.

Per a saber més us recomano que visiteu durant les properes setmanes www.aebios2016.info

Comentaris virus-lents (174): virus Zika i desinfectants: easy to be killed.

Encara que el virus Zika es transmet bàsicament per vectors també està descrita la seva transmissió a través de fluids corporals com semen i líquids vaginals (per més detalls consultar entrades prèvies) i té una fase de virèmia…per tant és susceptible d’arribar a l’exterior i contaminar objectes o superfícies.

 

Fins fa unes poques setmanes s’assumia que la inactivació o desinfecció de material contaminat amb Zika s’havia de fer seguint el que es sabia de la resistència a desinfectants i tractaments d’altres flavivirus, ja que el virus Zika és un flavivirus.

Disinfectant sprays

Ara però, ja tenim dades específiques pel virus Zika. Les dades, que es poden llegir en detall a l’enllaç al final de l’entrada, són:

  • Zika és completament inactivat quan entra en contacte amb desinfectants alcohòlics (isopropanol 70%, etanol 70%, DMSO/etanol 70%) amb temps de contacte de 1 minut.

  • Zika és completament inactivat quan entra en contacte amb solucions de hipoclorit sòdic del 1% (recordem que el lleixiu domèstic sense diluir està al 5%) per temps de contacte de 1 minut.

  • Zika és completament inactivat quan entra en contacte amb fixadors com paraformaldehid al 2% o glutaraldehid al 2% per temps de contacte de 1 minut.

lleixiu slide_25

Aquesta completa inactivació es mantingué encara que el virus es barregés amb quantitats creixents de matèria orgànica (com podria ser el semen, la sang), que en principi dificulta l’acció dels desinfectants (aquesta es la raó per la que es demana un rentat inicial exhaustiu de mans amb sabó abans d’aplicar cap solució desinfectant de base alcohòlica, per exemple).

 

Zika també és inactivat per la llum UV (les condicions experimentals, tanmateix no són les ambientals). En aquest cas, però, en presencia de molta material orgànica en dissolució la llum UV si bé inactiva el 99,95% dels virus presents deixa encara certa infectivitat residual.

 

Més important és l’altre dada. Quan es deixà dessecar el virus sobre una superfície i es recuperà a les 36 hores, vora un 95% dels virus han desaparegut, s’havien inactivat…sense fer-hi res. S’ha de dir que aquest efecte és un vell conegut pels que treballem en això. En aquestes mateixes condicions experimentals el virus Zika sobrevisqué més allà de tres dies, la qual cosa ressalta la necessitat d’efectuar una desinfecció correcta. Tanmateix no hi hagué títol infecciós, ni rastre, als 5 dies..una caiguda massa abrupte…potser un problema metodològic. En qualsevol cas una superfície contaminada que pateixi dessecació i insolació (llum UV) homogènies quedarà probablement “segura” en uns pocs dies sense aplicació de cap mesura desinfectant.

 

Escalfar és la solució, també; el vius es capaç de resistir temperatures de 50ºC per 5 min sense pèrdues d’infectivitat; tanmateix a 60ºC hi ha una pèrdua total d’infectivitat, per sobre de 5 log10 R o 99,999% d’inactivació. Aquest remei sembla també fàcil d’aplicar…

 

Si ens recolzem en el potencial inactivador del pH el virus únicament és estable en el rang entre 7 i 10, demostra la seva feblesa si entra en contacte amb pH entre 4 i 6 i pH de 11 i és totalment inactivat (més de 99,999%) per pH de 4 o inferiors o pH de 12 a 14. ¿Quina importància té això? Relativa, però si sabem que el lleixiu té un pH de 12  i que el vinagre té habitualment un pH per sota de 3 ja tenim remeis casolans i barats, per fer desinfecció de campanya.

 

No serà un article trencador però era un article necessari. Ara ja sabem que podem fer servir, i com fer-ho servir, per guarir-nos de potencials objectes contaminats amb el virus Zika.

zika-fact-card

Encara que l’autopista de transmissió continuen essent els mosquits i per aquestos calen mesures preventives (difícils) i executives (matamosques, molt més fàcils).

 

Però aquesta, aquesta és una altra història.

 

Enllaç original: http://wwwnc.cdc.gov/eid/article/22/9/16-0664_article

 

Comentaris virus-lents (135): Bioseguretat a Catalunya; entrenant, sembrant als futurs formadors.

Les últimes emergències virals mediàtiques (Ebola, MERS-Coronavirus, Chikungunya) no fan més que alimentar la necessitat d’una bona pràctica en el disseny, ús, manteniment de laboratoris o instal·lacions que treballin amb patògens d’elevada perillositat i greus conseqüències en cas del seu alliberament involuntari o malintencionat. També en el transport de materials infecciosos (no solament mostres valuoses, si no, el que és més important, encara que només sigui volumètricament, els residus infecciosos), en la correcta selecció i l’adequat ús dels equips de protecció individual (EPIs), en una adequada gestió del risc biològic, en l’adequada selecció dels processos de desinfecció i descontaminació, i en una gestió eficient i transparent dels accidents i les emergències, entre altres temes.

InfectiousSymbol

Per segon any una visió moderna i actual de tots aquests temes ha estat donada dins el marc del Postgrau “Estrategias en bioseguridad y biocontención” organitzat per la Universitat Autònoma de Barcelona, entre els dies 5 i 9 d’octubre, en sessions de matí i tarda, amb suports pràctics. El temari del Postgrau reflecteix fil per randa allò enumerat al paràgraf anterior i compta addicionalment amb una visita intensiva a les instal·lacions de IRTA-CReSA, una instal·lació de alta seguretat biològica de primer nivell europeu ubicada a Catalunya.

Aquest any he tingut el plaer novament de participar parlant de la guia CWA 15793 sobre “Gestión del riesgo biológico”, una guia que integra els conceptes de gestió de la qualitat i millora continua camb un enfocament principal sobre la gestió de la bioseguretat i la bioprotecció, però aquest és un altre tema que tractarem en el futur.

El que vull parlar és de la necessitat de formar personal en aquest camp. Les emergències biològiques continuaran succeint-se en el futur, amb major o menor cobertura mediàtica. Per informar adequadament a la població caldria que a tots els nivells hi hagués gent que entengués com es gestiona la bioseguretat, la biprotecció, com es maneguen els patògens, i el que és més important que una gestió “perfecte” del risc biològic no implica risc “zero” si no un reducció molt significativa del mateix que no evita, però, possibles accidents i/o conductes malèvoles. I quan dic tots els nivells, vull dir tots els nivells: policia, serveis d’emergències, funcionaris del Departament de Salut, responsables de prevenció a hospitals, membres de gabinets de comunicació, periodistes, etc.

Pel professorat que no quedi, però; per fer la formació més propera el Postgrau es limita a un màxim de quinze alumnes; aquest any han estat dotze alumnes, alguns d’ells iberoamericans. L’èxit del curs es mesura per l’opinió de l’alumnat i aquesta, per segon any, ha estat molt positiva com mostren les mètriques dels qüestionaris (l’estructura i contingut del curs, la qualitat dels continguts i del material docent, les visites i sessions pràctiques, i l’adequació a les expectatives han superat una puntuació de 9 sobre 10).

Qui vulgui saber més pot entrar a l’enllaç http://www.uab.cat/web/postgrado/curso-en-estrategias-en-bioseguridad-y-biocontencion/informacion-general-1206597475768.html/param1-3045_es/param2-2012/ que detalla el programa d’aquest curs ja passat.

Pel proper curs segur que es farà algun canvi per millorar-lo, o per entrar temes nous de resultes de les alertes biològiques que es generin. Pel que el risc biològic i la seva gestió, com tot a la vida, muta contínuament.

Però aquesta, aquesta és una altra historia.

Comentaris virus-lents (125): IRTA-CReSA dins la RELAB; …Umm, que és la RELAB?

La nota breu seria; IRTA-CReSA ha estat admès, s’ha incorporat a la RELAB.

Umm, us preguntaríeu, i què es la RELAB?

Potser convé llavors una mica d’introducció al tema…

bioterrorism signal

Un estat ha d’estar preparat, entre altres coses, per fer front a una amenaça de caire biològic, ja sigui purament natural o induïda per l’esser humà, el que venim a anomenar bioterrorisme.

L’aproximació de tancar fronteres en el cas dels patògens no té cap utilitat; els patògens no en coneixen i en el cas d’un acte de bioterrorisme no és útil perquè el problema ja s’ha desfermat. A més prous agents biològics susceptibles de transformar-se en una arma són relativament de fàcil d’adquirir o produir (propagar); són resistents a factors ambientals; poden tenir un poder altament incapacitant temporalment o permanentment (a les persones, als animals, a les collites), són contagiosos (efecte multiplicatiu) i suposen un baix risc pels terroristes (poden estar lluny de la zona quan es notin els efectes).

Actualment les actuacions es basen més en:

  • Sistemes de ràpida alerta
  • Plans de contingència (o el què faríem si…?)
  • Reserves de subministres o contramesures essencials
  • Sistemes de comunicació ràpida entre xarxes especialitzades

I pel que fa a una amenaça biològica cal:

  • Identificar l’amenaça (normalment lligat a la virulència del patogen, la seva via de transmissió i la quantitat alliberada)
  • Establir estratègies de reducció del risc (contenció del patogen, quarantena de zones i/o persones)
  • Quantificar el risc residual i establir decisions en funció d’un risc acceptable (recordem el risc “0” no existeix i després d’una amenaça biològica menys encara).
  • Fer un seguiment per avaluar si s’ha gestionat degudament el risc.

És evident que un estat present o un estat futur ha de preveure, fins on pugui, aquestes crisis, que mai seran del tot controlables, per apaivagar efectes i conseqüències (per poder contestar SÍ o NO a preguntes i escenaris prèviament plantejats); en poques paraules per no crear una segona crisi dintre o després de la crisi inicial.

Yes No disjuntive ID-10094976

Aquest és l’objectiu de la RELAB, que dins l’actual marc polític fou aprovada el febrer de 2009. La RELAB és la Red de Laboratorios de Alerta Biológica. En la RELAB es troben incorporades una sèrie d’àrees; salut pública; sanitat animal; sanitat alimentària; sanitat ambiental i sanitat vegetal. La finalitat de la RELAB és la de compartir i integrar coneixements i capacitats de centres i laboratoris tant en situacions de normalitat com de crisi, obtenint la màxima eficiència dels recursos disponibles per reforçar les defenses sanitàries front una potencial emissió deliberada d’agents biològics. No menys important, coordinar informacions i comunicacions derivades de les actuacions quan es participa en la resposta a l’emergència (aquí entra el concepte de intentar no generar una segona crisi després de l’esclat de la primera). Finalment la connexió de la RELAB amb altres xarxes d’alertes biològiques de la UE i de la OTAN és necessària per una adequada transmissió de dades i protocols.

Davant d’una amenaça biològica cal per un costat una ràpida detecció de la contaminació i una posterior descontaminació de la zona o espais afectats; secundàriament (des d’el punt de vista temporal, que no d’importància) tractament dels afectats i control de la malaltia (quarantena, per exemple). En una situació de pau, IRTA-CReSA formaria part d’aquest sistema de protecció que ajudaria a la ràpida detecció de la contaminació (amb el seu potencial de diagnòstic i les seves instal·lacions que garantirien una segura manipulació de l’agent biològic perillós) i podria col·laborar en la descontaminació amb la seva experiència en aquest camp; evidentment el tractament dels malalts quedaria per altres nòduls de la RELAB.

Igitur qui desiderat pacem, praeparet bellum, que podríem traduir per “qui desitgés la pau, caldria que es preparés per a la guerra”. S’ha fet molt d’abús d’aquesta frase, però, certament, no podem donar una resposta a segons quines amenaces si no tenim estructures organitzades, i alguns supòsits o mecanismes d’actuació no han estat pensants per avançat. O és que pensaríem en com tenir un cos de bombers quan les flames llepessin les parets de casa nostra?

Però aquesta, aquesta és una altra història.

Comentaris virus-lents (118): Ebola i persistència ambiental, dades finals per ara (¿?) i discussió

Un altre, i paro. No em feu massa cas, però.

Quantes més dades es tenen més acurada es pot fer la desinfecció i el tractament de superfícies o ambients contaminats amb Ebola. Un estudi pràcticament contemporani al discutit a les entrades 114 i 116 ha estat publicat al Emerging and Infectious Diseases (enllaç al final).

Els autors es pregunten de nou la capacitat del virus Ebola de persistir dessecat sobre superfícies habituals en àmbit hospitalari como pot ser acer inoxidable, plàstic o Tyvek (el material del que es fan les granotes de protecció). A diferencia de l’altre estudi però, assagen dues condicions ambientals que difereixen en temperatura i humitat relativa (HR); Així assagen virus dessecats a 21ºC i un 40% de HR o bé 27ºC i un 80% de HR, durant un termini de 14 dies.

Com es veu a les gràfiques que adjuntem les corbes d’inactivació segueixen unes cinètiques de primer ordre (es diuen així aquelles cinètiques lineals un cop transformades a escala logarítmica). Això permet fer algunes transformacions matemàtiques (regressions) i comparar també de forma matemàtica si hi ha diferències i si aquestes són significatives entre les condicions ambientals i superfície assajades.

Novament es manifesten veritats de calaix; com més alta es la temperatura més ràpida és la inactivació vírica. Així …

Ebola persistence fomites 15-0253-F1La inactivació vírica s’expresa en reducció logaritmica del titol viric respecte el temps; acer inoxidable: stainless steel.

 

Si comparem A i B veiem com la caiguda, el pendent de la corba és molt més intens a A (27ºC) que no a B (21ºC). El virus no aguanta bé els increments de temperatura i per cada grau d’augment es deixa una mica de la seva persistència. La HR també deu jugar un paper però per articles previs amb altres virus serà menys significatiu. Per altra banda, quan la inactivació és molt intensa és difícil robar diferències entre materials; Ebola perd un 99,99% del seu títol en 3 dies i més del 99,9999% als 4 dies; això son 4 log10R i 6log10R respectivament. I tots els materials semblen comportar-se igual.

A 21ºC (B) amb una caiguda més suau si que es veuen diferències entre materials; el virus persisteix més i pot estar encara viable, i amb un títol infecciós significatiu passada 1 setmana. El material menys permissiu sembla l’acer inoxidable i el que més afavoreix la persistència vírica el tèxtil Tyvek.

Per altra banda els autors es pregunten sobre la persistència del virus si fluids o sang infectada arriben a l’aigua de rius o dipòsits susceptibles de ser emprats com aigua de beguda. Recordem també que Ebola ha estat aïllat de l’orina que pot acabar arribant a rius i llacs. La persistència d’Ebola en aigua, també fortament marcada per l’efecte de la temperatura és veu a la Figura 2. Ebola pot mantenir-se viable amb caigudes de 3 log10R a 3 dies per 27ºC i fins a 5-6 dies per 21ºC. Això vol dir que si el virus arriba a l’aigua i aquesta no és tractada aquesta aigua pot ser un medi de transmissió.

Ebola persistence water 15-0253-F2

També avaluaren la persistència d’Ebola a taques de sang que es deixaren dessecar sobre plàstic estèril en ambdues condicions ambientals (és la figura B). El virus mantingué la seva infectivitat fins a 6 dies en condicions tropicals. Per tant tots les estris i materials que estiguessin tacats amb sang o exudats externs dels infectats serien fonts potencials de transmissió.

I fins i tot hi ha estudis que han demostrat la viabilitat del Ebola virus a la sang de cossos de micos morts fins a 7 dies després del decés. I bioquímicament no ens separa gaire per no dir gens, als humans, dels micos. Això sí que és tenir una “mà activa”, un efecte, després de la mort.

Tinguem present però algunes limitacions una, que cada sang és particular, i que la concentració específica de proteïnes, i altres molècules poden fe una sang més favorable que altra a la persistència d’Ebola; la segona molt mes important, que aquest experiment s’ha fet en condicions controlades de laboratori, en esterilitat, i que en un ambient natural, com l’africà, l’acció de bacteris i compostos químics poden influenciar, sempre negativament, la persistència del virus. És a dir, aquestes dades són un millor cas, un best case, per la persistència vírica, difícilment sobreviurà més, molt probablement sobreviurà menys.

Més dades, mai en tindrem prou!!. Tanmateix, quan això t’ho trobes “al camp”, en una situació real, s’ha de tenir el cap molt fred per tenir-les en compte.

Però aquesta, aquesta és una altra història.

 

Enllaç a l’article: http://wwwnc.cdc.gov/eid/article/21/7/15-0253_article

Comentaris virus-lents (116): Ebola i desinfectants domèstics; noves dades.

Quan un s’enfronta a un virus al laboratori, o en mig d’una emergència, necessita posar distància entre ell i el virus. Això es pot aconseguir amb indumentària especial, molts cops hidròfoba, que repel·leix l’aigua i fluids i per tant evita l’entrada dels virus; amb mascaretes o sistemes de filtració d’aire, que els atrapen i eviten la seva inhalació; amb guants, botes, maneguets. Dins els laboratoris encara creem més distancies ja que manipulem les mostres dins cabines de seguretat biològica que generen una cortina d’aire que atrapa i conté els virus potencialment presents a mostres i materials.

Tanmateix cap sistema és absolut, completament segur i a més resulta que tot allò que es fa servir un cop, queda potencialment contaminat i el seu cost fa que sigui impossible assumir single use, un únic ús, un emprar i llençar. És aleshores quan els desinfectants entren en escena.

Quan els virus són letals, i per tant força difícil fer proves “in vitro” amb ells, moltes vegades recorrem a l’efectivitat demostrada dels desinfectants en virus de la mateixa família o bé virus que comparteixen característiques semblants però que són més “amables” a l’hora de treballar (bàsicament que no t’hi jugues la vida cada dia). Per característiques semblants entenem presència d’embolcall, estructura d’aquest embolcall, mida de la partícula, tipus i mida de l’acid nucleic, etc. Així, els desinfectants emprats per l’Ebola ho son més per proves indirectes, o escasses, que no per una munió de dades i cites bibliogràfiques.

A més, en una situació de crisi no pot ser que el desinfectant d’elecció sigui  el-no-va-més del desinfectants, distribuït per una o unes poques empreses. Calen desinfectants que pugis trobar a qualsevol llar, d’ampli espectre, de fàcil distribució i emmagatzematge, i de fàcil manipulació i ús, que no deixi residus poc gestionables ambientalment.

Dos que em venen al cap i que faig servir abundosament a la meva feina…l’etanol i el lleixiu domèstic.

I aquesta mateixa aproximació fan els autors de l’article (veure link al final) pel que fa a la desinfecció de l’Ebola.

Farem la discussió a partir de la gràfica del seu article.

Ebola viruses-07-01975-g002-1024-disinfectants

Si mireu el lleixiu domèstic que teniu a casa veureu que té entre 40-50 gr de clor actiu per litre. Això ve a ser un 4-5% de clor actiu. Els investigadors avaluaren l’eficàcia de solucions amb concentracions finals de lleixiu de 1%, 0,5%, 0,1% i 0,01% (si diluíssim el nostre lleixiu 5 vegades, o 10 vegades o 50 vegades o 500 vegades respectivament) sobre ebolavirus prèviament dessecats damunt superfícies d’acer inoxidable. Pel que fa a l’etanol barrejaren aquest amb aigua fins assolir una solució al 67% d’etanol. Pels dos desinfectants els temps escollits per veure la càrrega vírica que persistia foren 1 minut, 5 minuts i 10 minuts.

El lleixiu diluït al 0,01%  resultà del tot inefectiu fins i tot als 10 minuts de contacte. Quan era diluït 1/50 (al 0,1%) es notava efecte als 10 minuts però encara hi havia una forta infectivitat residual. Diferencialment, aplicar sobre superfícies contaminades amb Ebola solucions de lleixiu al 1% o al 0,5% era totalment efectiu als 10 minuts de contacte (més de 6 log10 de reducció del títol infecciós) però també per períodes més curts, 5 min. Per temps de contacte de 1 min la reducció del títol era de 2-3 log10, el desinfectant encara no ha pogut desplegar tota la seva acció i encara n’hi ha força de virus infecciosos. L’etanol al 67% fou extremadament eficient (no es detectaren virus infecciosos) per temps de contacte 5 i 10 minuts i per temps de contacte breus, 1 min, era clarament més efectiu que el lleixiu.

Algunes conclusions…

  • La Organització Mundial de la Salut (OMS) recomana aplicar solucions de clor disponible al 0,5% per desinfectar superfícies contaminades. Tot correcte i coherent. Però cal reforçar i tenir sempre en ment el temps de contacte perquè aquestes concentracions no tenen un efecte miraculós, cal deixar treballar al desinfectant. És la combinació de desinfectant adequat i temps de contacte prou llarg la que confereix seguretat. Ni tan sols la concentració més elevada assajada (1%) és efectiva durant el primer minut.
  • A la llum del resultats aplicacions de desinfectants per temps de contacte inferior als 5 minuts és jugar a la ruleta russa.
  • El etanol resulta més efectiu que el lleixiu i això es una bona noticia per tos aquells materials que pateixen corrosió si entren en contacte massa sovint amb l’hipoclorit sòdic. Però també per les nostres mans i pell. A més és menys tòxic i més fàcilment gestionable ambientalment.
  • Potser no calen fer recerca, i despesa, en desinfectants més efectius i derivar esforços en aquest camp a aquelles àrees terapèutiques que precisen dels recursos.

La bona pràctica microbiològica ens ajudarà a mantenir-nos a distància dels materials contaminats o dels malalts infectats però totes les barreres que fem servir cal desinfectar-les abans d’eliminar-les o reutilitzar-les. I això és el que fan els desinfectants; els polis dolents, amb el que el poli bo (el metge, l’infermer, l’investigador) ha de tenir una confiança “absoluta”, si volen fer bona parella.

Però aquesta, aquesta és una altra història.

Enllaç: http://www.mdpi.com/1999-4915/7/4/1975

Comentaris virus-lents (115): Ebola i persistència ambiental; noves dades.

Quan un s’enfronta a un virus al laboratori, o en mig d’una emergència, necessita posar distància entre ell i el virus. Això es pot aconseguir amb indumentària especial, molts cops hidròfoba, que repel·leix l’aigua i fluids i per tant evita l’entrada dels virus; amb mascaretes o sistemes de filtració d’aire, que els atrapen i eviten la seva inhalació; amb guants, botes, maneguets, etc. Dins els laboratoris encara creem més distancies ja que manipulem les mostres dins cabines de seguretat biològica que generen una cortina d’aire que atrapa i conté els virus que potencialment puguin haver.

Tanmateix cap sistema és absolut, completament segur i a més resulta que tot allò que es fa sevir un cop queda potencialment contaminat i el seu cost fa que sigui impossible assumir single use, un únic ús, un emprar i llençar. Es aleshores quan podríem fer servir un concepte que si és absolut…el temps.

I aquesta aproximació fan els autors de l’article (veure link al final) pel que fa a la inactivació (natural) de l’Ebola.

Els autors suspenen el virus Ebola, la soca Makona, el barregen, amb un equivalent artificial de la sang, amb elevada càrrega proteica, i el deixaren assecar damunt superfícies, simulant la gota o l’esput projectat pel malalt i que cau al voltant seu. Els materials escollit foren superfícies d’acer inoxidable, molt comunes als hospitals i els materials plàstic-textils (mascaretes, granotes plàstiques impermeables) que constitueixen les barreres de protecció de cuidadors i personal sanitari. A l’estudi mesuraren la viabilitat del virus a 1 hora, 24 hores, 3 dies i 8 dies.

I quins foren els resultats? Us adjunto una gràfica i ho discutim.

viruses-07-01975-g001-1024

En aquesta figura es mostra la persistència ambiental de EBOV Makona (EBOV/Mak) suspès en un líquid amb alta càrrega proteica. S’escolliren com a condicions ambientals 21.5 °C i 30% humitat relativa. Cada punt de la gràfica és la mitjana de tres resultats i les barres d’error que es veuen reflecteixen la dispersió entre aquestes tres dades a cada punt.

Les superfícies poroses, com són les granotes, els “monos” de cotó fan perdre la viabilitat vírica més ràpidament. Així en una hora es veu una caiguda de 3 log10; és a dir, del 100% de virus passem al 0,1% de virus però és un magre consol perquè la dosi infecciosa d’aquest virus és molt baixa, de l’ordre de 1 a 10 partícules víriques. La inactivació complerta s’assoleix a les 24 hores. Dit d’altra manera, un tèxtil de cotó tacat amb una secreció que conté Ebola probablement no seria infecciós, en les condicions assenyalades, passades 24 hores (amb més seguretat als dos dies). Aquest efecte dels materials porosos ja ha estat força descrit per altres anteriorment per la qual cosa el podem donar per bo. Per contra, per superfícies no poroses, més impermeables, com són els materials de les mascaretes respiratòries i les granotes plàstiques la persistència del virus es perllonga en el temps, Cal esperar 24 hores per veure caigudes de poc més d’1 log10 (passar del 100% al 10%) i si deixéssim actuar purament al temps als 8 dies encara que tinguéssim una reducció d’entre 3 i 4 log10 restaríen prou virus per infectar el personal que manipulés aquests elements. No s’observaren diferències significatives entre els materials no porosos, per tant sembla un comportament que podríem extrapolar a altres materials com vidres, utensilis plàstics, recobriment armaris, pintures, etc.

Aquí no s’estan valorant efectes de la radiació solar i del component UV de la mateixa, i les condicions de temperatura es poden considerar suaus. Hom podria pensar que en aquests països on són més que freqüents les temperatures per sobre dels 30-35ºC una dessecació al sol, amb el seu component ultraviolat, i més ràpid degut a una temperatura més alta, tindria un efecte més devastador sobre la persistència vírica. Però és una suposició, no puc provar-ho.

I és així com, per forçar la mà, per anar més despresa i assegurar-nos absència d’infectivitat abans de manipular materials, equips o superfícies, que recorrem als desinfectants.

Però aquesta, aquesta és una altra història.

Enllaç: http://www.mdpi.com/1999-4915/7/4/1975

Comentaris virus-lents (121): Entrenant-se per caminar pel tall de la navalla.

Nova edició del curs de Post-grau en Estrategias en Bioseguridad y Biocontención. El primer es va celebrar amb èxit, i una espectacular bona valoració per part de l’alumnat, el passat octubre, del 2014. Aquest any, amb una reformulació de continguts se celebra la segona edició, en la Facultat de Veterinària de la Universitat Autònoma de Barcelona, ​​i en les instal·lacions de l’IRTA-CReSA (Centre de Recerca en Sanitat Animal).

A més dels professors de la passada edició s’ha obert la porta a professionals de reconegut prestigi amb molts anys d’experiència en camps com la filtració d’aire HEPA (high efficiency particulate air) i disseny de cabines de seguretat biològica, mètodes físics i químics de desinfecció i esterilització, normativa de transport de materials biològics, i equips de protecció individual, entre altres. Tot això acompanyat per personal que treballa dia a dia en instal·lacions d’alta seguretat biològica, que pot donar no només un coneixement teòric sobre el disseny, construcció, validació operativa i funcionament de les mateixes si no el dia a dia, la gestió de les activitats i de les potencials incidències.

Un curs altament recomanable per a tots aquells que volen iniciar-se amb una bona base en el món de la bioseguretat o la biocontenció; o per aquells que ja tenen aquesta base, però que vulguin veure enfocaments o punts de vista diferents a temàtiques concretes. Perquè ningú ho sap tot, de totes les maneres possibles. I perquè a la solució adient es pot arribar transitant per camins diversos.

Però aquesta, aquesta és una altra història.

Per més detalls es pot consultar l’enllaç: http://www.uab.cat/web/postgrado/curso-en-estrategias-en-bioseguridad-y-biocontencion/informacion-general-1206597475768.html/param1-3045_es/param2-2012/