comentarisviruslents

Aquest blog és una seguit de comentaris personals i probablement poc transferibles sobre ciència i política.

Archivos por Etiqueta: bios

Comentaris virus-lents (208): El bioterrorisme pot ser molt, molt animal (2).

 

Com acabàvem a l’entrada 206 (https://comentarisviruslents.org/2018/04/13/comentaris-virus-lents-206-el-bioterrorisme-pot-ser-molt-molt-animal/) un cop tenim clar que al bioterrorisme no li cal actuar sobre els éssers humans per provocar tota una disrupció social o econòmica en un país, fent trontollar el sector ramader i tota la industria agroalimentària associada, hem de interessar-nos per aquests efectes.

 

Un brot epidèmic té una sèrie de costos directes com són aquells relacionats amb la morbilitat, moralitat, pèrdues productives, cost de tractaments, stamping out (o sacrificis generals), suport econòmic al mercat i als ramaders, restriccions de criança, vacunacions d’emergència, vigilància per detectar animals potencialment infectats, activitats diagnòstiques (costos de personal i reactius) i l’establiment de restriccions de moviment i quarantenes. Però també té costos indirectes, com són el temps necessari per tornar als valors de producció inicial sobre tot si s’han fet sacrificis generals i les disrupcions comercials (el status de regió lliure d’una malaltia es pot reclamar però només quan han passat unes setmanes o mesos des d’el darrer cas detectat).

 

Tornem al nostre hipotètic terrorista…les preguntes que es faria serien… I quin escullo? Què li he de demanar al meu agent biològic per poder tenir èxit?

 

La resposta genèrica és obvia, allò que faci més mal (econòmic) i tingui major facilitat de transmissió. I el mal no necessàriament implica altes taxes de morbilitat o letalitat; n’hi ha prou amb que la declaració de la infecció canviï l’estatus sanitari del país i bloquegi les exportacions perquè el mal ja estigui fet. I si portem això al detall, podríem fer aquesta carta de “desitjos”:

  • Altament infecció i contagiós (recordeu que són conceptes diferents).

  • Bona persistència a les condicions ambientals (habitualment temperatura, dessecació, acció del component UV de la radiació solar).

  • Capaç de ser efectiu i predible, generant un patró de malaltia clínica consistent.

  • Que no deixi traça, que pugui ser confós amb un brot natural (com a mínim en el seu inici).

  • Òbviament, patogènic pels ramats locals.

  • Disponible, i fàcilment produïble o adquirible.

  • No perillós pel manipulador o dispensador (el/la bioterrorista).

  • Fàcilment disseminable.

No serà possible trobar cap agent que compleixi tos els criteris per la qual cosa la priorització i elecció dels importants estarà molts cops delimitada pels recursos humans, econòmics i tècnics dels bioterroristes.

 

No parlarem aquí dels 4 primers “desitjos”…sense manipulació genètica, que entraria dins de la recerca dual “problemàtica” (el que es diu DURC, Dual Use Research of Concern), aquests desitjos estan marcat per la biologia i les característiques del patogen i de la seva interacció amb els animals susceptibles. El cinquè és obvi…caldrà escollir una soca vírica, o una espècie bacteriana en front la qual els animals siguin “naive”, no hagin tingut contacte previ, encara que no és indispensable, tenint en compte les taxes de reposició, el fort recanvi d’individus a granges i explotacions.

 

bioterrorism colour team

 

Com aconseguir l’agent?

 

El fluid vesicular (habitualment amb un títol alt) d’un porc infectat amb virus de la febre aftosa (VFA) pot ser transportat a una altra regió, i retenint encara prou infectivitat, per contaminar un gran nombre d’altres animals (sempre que pugis accedir a les granges, és clar). I això seria també extrapolable per VPPA, VPPC o NV (veure entrada 206). Tinguem present però, que les tècniques actuals de biologia molecular podrien traçar l’origen inicial perquè les soques dels brots tenen “marques” específiques, es poden destriar en funció de la seva seqüència genòmica.

 

Com manipular-lo i emmagatzemar-ho?

 

També podem optar no per una aplicació directa si no per una prèvia amplificació, una producció en grans quantitats, ja sigui in vivo (per exemple, en una explotació fora de circuit veterinari) o in vitro. La primera no és impossible; la segona tampoc, però necessitaria uns laboratoris de microbiologia convencional, recordeu que no són agents zoonotics i els éssers humans podem manipular-los amb seguretat, i quantitats importants de reactius (que podrien deixar traça), i personal amb bons coneixements de cultiu cel·lular i propagació vírica. Una combinació no tan senzilla de donar-se.

 

I aquesta producció, si es vol emmagatzemar ha de fer front al repte de mantenir la infectivitat durant setmanes o mesos; a diferencia de les armes químiques o nuclears, les armes biològiques tenen una data de caducitat molt propera a la data de producció sobre tot si es troben en forma líquida, per ser aerosolitzades. Els agents esmentats a l’entrada anterior poden ser dessecats o liofilitzats però perden bona part de la seva infectivitat i després caldria reconstituir-los i aerosolitzar-los i aquí tenim un altre repte, perquè per una aerosolitació efectiva fa falta generar unes gotícules molt petites i homogènies de mida 1 a 10 um, si volem que es mantinguin a l’aire i es desplacin molts metres des d’origen, i això tècnicament no és gens senzill.

 

I que en el moment que aerosolitzem, si ho fem a camp obert al costat d’una granja les condicions climàtiques són una ruleta rusa addicional; insolació, llum UV, regim de vents, humitat relativa poden fer que l’aerosol s’inactivi en minuts, o hores o bé que s’escampi en la direcció no desitjada.

 

Com aplicar-ho? Target ideals?

 

El target ideal, la diana per un atac bioterrorista seria, sense dubte, les unitats de producció intensiva, amb un gran nombre d’animals en espais relativament reduïts que garantirien la infecció d’una fracció dels mateixos i la disseminació de l’agent a la resta. Tanmateix si únicament s’actua en una granja l’acció pot ser blocada ràpidament, i pot deixar rastre (ja que es posaria sota lupa tota l’activitat, entrades, visites, etc. d’aquesta granja).

 

L’alternativa seria actuar en un nombre, important, de petites granges relativament disperses, el que resultaria en un brot epidèmic més extens i més difícil de controlar (encara que els nombre d’animals infectats fora al final menor). Aquí es jugaria amb els perímetres de control i exclusió que podria bloquejar tota l’activitat de moviment d’animals d’una regió.

 

Finalment sempre hi ha la possibilitat d’infectar animals silvestres, el que podria resultar en un brot epidèmic molt més difícil de descobrir, traçar i controlar…pel terrorista també, perquè la variabilitat i els paràmetres que s’escapen al seu control són encara més grans.

 

I què podem fer per evitar-ho?

 

Deixant de banda els alts nivells (representats per la BTWC, Biological and Toxin Weapons Convention) que ha estat ratificada per 141 estats i en vigor des de 1975, a nivell local, de país, l’acció es basa en estratègies i plans de contingència: definir el rol de les agències i departaments involucrats; millorar i mantenir engreixades les capacitats diagnòstiques (no solament amb laboratoris equipats si no també ensinistrant els grangers, veterinaris i altres interessats per reconèixer i reportar qualsevol malaltia sospitosa, o símptoma clínic “fora de lloc”; i mantenir actualitzar un estoc de vacunes contra les malalties més greus (els casos de VFA i rinderpest, perquè per VPPA i VPPC no en tenim vacuna ara mateix).

 

I si finalment esdevé l’atac? Si finalment hi ha confirmació el que cal és mitigar els efectes mirant de reduir l’abast del brot i fer-ho des d’el primer moment amb una comunicació transparent, cercant col·laboració però aplicant protocols de forma estricta, sense miraments (diagnosis, sacrifici, destrucció dels animals infectats, desinfecció), i sense excepcions. I aplicar vacunació d’emergència, si procedeix, encara que això està sotmès a discussió.

 

 

Perquè aquesta, aquesta és una altra història.

Anuncios

Comentaris virus-lents (197): Treballar amb artròpodes infectats a NBS3; ser picat o no ser picat? Vet aquí la qüestió-i 3.

 

En una instal·lació en la que es treballi amb vectors artròpodes (en el nostre cas mosquits) cal tenir clar el nivell de contenció a aplicar en cada moment. Us poso una taula que vaig presentar en una conferència (EBSA 2017, veure entrada a https://comentarisviruslents.org/2017/04/19/comentaris-virus-lents-192-conferencia-ebsa-to-be-or-not-to-be-safe/) fa uns dies i us l’explico.

 

ACL table-2

 

En un ACL1 (Arthropod Containment Level 1) hi maneguem els vectors autòctons ja establerts al nostre ambient (i per tant difícilment en tindrem nosaltres més a dins que els que hi han a fora) i aquells vectors exòtics pels que és inviable la seva supervivència exterior, sempre i quant no estiguin infectats amb cap patogen que afecti éssers humans o animals. La impossibilitat de supervivència exterior té a veure bàsicament amb consideracions climàtiques.

 

Al ACL2 es planteja la manipulació d’artròpodes autòctons o exòtics infectats amb microorganismes de grup de risc 2, o GR2, o mosquits modificats genèticament sempre i quan aquests modificacions siguin neutres o fins i tot negatives per paràmetres crítics del mosquit com viabilitat, rang d’hostes, fitness reproductiu, etc.

 

I els nivells ACL3 i ACL4 van marcats directament pel grup de risc del patogen manipulat. A un virus de GR3 li correspondria un NBS3, i en el cas que s’inoculi aquest virus en un mosquit, encara que aquest sigui autòcton, haurem de treballar sota un ACL3. I el mateix passaria amb un GR4, que requerirà al final un ACL4.

 

No parlarem extensament de la feina al meu centre, IRTA-CReSA, on es treballa en competència vectorial amb un seguit de virus de GR3 com són West Nile virus, Rift Valley Fever virus, Chikungunya, virus dengue i ara darrerament Zika (encara que aquest és un patogen GR2), per això millor aneu al blog específic del centre CReSA & the city, http://www.cresa.cat/blogs/sociedad/ però sí que acabarem aquest seguit d’entrades relacionades amb unes consideracions finals sobre la manipulació d’artròpodes infectats en condicions de contenció.

 

englisch_biostoffv-G-wordml02000001

 

Consideració 1: Les avaluacions de risc s’han de fer cas a cas, per a cada estudi. No serà el mateix treballar amb Aedes albopictus i Zika que amb Aedes aegypti i virus dengue, per exemple. I poso aquesta combinació de casos perquè és una mica excepcional. Expliquem-ho. Que és Aedes aegypti? Un vector exòtic al nostre territori, així que com a mínim li assignaríem un ACL2 (no podem assignar-li un ACL1 perquè si s’escapés aquest sí que té possibilitats d’establir-se a les nostres contrades). I l’apugem al ACL3 al treballar-hi en combinació amb el virus dengue, un virus exòtic i de GR3. Per contra, Aedes albopictus està completament establert a tot el Llevant de la península, per tant podria ser considerat un ACL1 per si sol; Zika està categoritzat com un virus de GR2, i nosaltres la combinació artròpode-virus la treballem a NBS3, si bé amb modificacions pel que fa als protocols i nombre i disposició d’EPIs, precisament per evitar que se’ns escapi un mosquit infectat amb Zika, que no està al nostre territori, i pugui establir un cicle autòcton de replicació amb els problemes de salut pública que això suposaria. A Brasil, on Zika ja està establert, aquests estudis es podrien fer en condicions ACL2.

 

Consideració 2: El treball amb artròpodes pot arribar a ser molt fi, i requerir molta precisió. Es fan disseccions de mosquits infectats, òbviament amb lupes i tècniques precises. Tots aquests treballs, com també l’obtenció de saliva de mosquits a partir de les seves glàndules salivars es veurien dificultats si carreguem els nostres treballadors d’un nombre d’EPIs excessius i en alguns casos inútils o si col·loquem massa barreres entre ells i el material amb el que treballen. Per tant, mantenint la bioseguretat, cal facilitar la feina a l’investigador, ja que si no, se li està portant a la vora de l’incident o l’accident. De fet, un element paradigmàtic quan es treballa a NBS3 és que sempre cal fer servir la CSB per a qualsevol treball experimental. Això per mosquits és bastant difícil si no impossible, ja que els mosquits anestesiats o adormits per a ser manipulats, si no estan continguts en capses o recipients, poden ser arrastrats pel corrent d’aire, el flux, de la pròpia CSB.

 

Consideració 3: Sempre que sigui possible, per exemple a les disseccions, treballar amb el mosquit mort i no amb el mosquit anestesiat (es fa deixant el mosquit sobre una placa que deixa anar CO2, per exemple). Treballar amb el primer garanteix més seguretat ja que no es pot despertar i aixecar el vol, amb el problema que això suposaria.

 

Consideració 4: Una màxima del control de riscos és si no eliminar-los sí reduir aquests el més ràpidament possible. Si es vol fer extraccions d’àcids nucleics per esbrinar si un patogen s’ha disseminat pel mosquit (recordeu que cal que el virus no solament sigui xuclat si no que ha de travessar el sistema digestiu del mosquit i disseminar-se per ell fins arribar a les glàndules salivars perquè el mosquit pugui infectar) res més fàcil i segur que agafar una fracció d’aquest i posar-lo en un tub que contingui un tampó de lisi comercial (són solucions d’agents caotròpics que desnaturalitzen i inactiven proteïnes i permeten recuperar després els àcids nucleics). Aquest tub encara que contingui una pota, o un cos de mosquit infectat, té la consideració de no infecciós o inactivat i es pot treballar en condicions de bioseguretat menys estrictes, i per tant es redueixen les probabilitats d’accidents amb material infecciós.

 

Consideració 5: Seguint amb la màxima de control de riscos anterior, l’accés a les àrees experimentals d’estudis de competència vectorial està fortament restringida. Només el personal que hi treballa i personal de gestió o control d’instal·lació hi té accés (no els serveis de neteja, no els serveis de manteniment extern o de calibratge d’equips), que sap el que ha de fer en cas d’incidents o accidents.

 

Consideració 6: Expect the unexpected. Sempre cal tenir plans de contingència. En el món dels artròpodes això es fa amb dues eines molt senzilles però efectives. Una, el comptatge dels subjectes experimentals. Als laboratoris d’artròpodes, durant els processos experimentals es compten els animals contínuament, al començament i al final de cada dia, i els comptatges han de coincidir. Això garanteix que no hi ha cap escapament. Si el comptatge no és idèntic s’ha de rastrejar, trobar i eliminar l’espècimen que s’ha alliberat. Això pot semblar difícil però és aquí on entra la segona eina. Entre l’artròpode, infectat o no, i l’exterior s’han posat prèviament una sèrie de barreres per dificultar la seva sortida i facilitar que pugui ser trobat i eliminat. Els panels de les habitacions de treball són llisos i clars (blancs); hi ha sistemes (un o més d’un) de dues portes commutades, que no es poden obrir alhora, on la gent que transita està estones curtes confirmant visualment l’absència d’espècimens; el personal es sotmet com a mínim a una dutxa de sortida (pot ser d’aigua però també d’aire, sols que en aquest cas és un corrent molt potent d’aire) en un sistema de doble porta també commutada per arrastrar contaminants; en cadascun d’aquest compartiments entre barreres hi ha sistemes de captura, trampes de llum o de CO2, trampes adhesives, etc. Tot això, que superposat pot suposar de 5 a 7 ó 8 barreres que ha de travessar l’insecte, fa gairebé impossible el seu escapament (i recordem que el cicle biològic del mosquit fa que aquesta amenaça s’estengui per un període d’uns quants dies, unes poques setmanes).

 

I amb això acabem aquest curt passeig per la bioseguretat i els seus nivells, la biocontenció, i el maneig d’artròpodes infectats. Però com ja hem dit cada cas experimental serà sempre un cas nou, un cas diferent.

 

Risk assessment triad

Però aquestes, aquestes són altres històries.